Skip to main content
Log in

Numerical study of the geometry of the phase space of the Augmented Hill Three-Body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The Augmented Hill Three-Body problem is an extension of the classical Hill problem that, among other applications, has been used to model the motion of a solar sail around an asteroid. This model is a 3 degrees of freedom (3DoF) Hamiltonian system that depends on four parameters. This paper describes the bounded motions (periodic orbits and invariant tori) in an extended neighbourhood of some of the equilibrium points of the model. An interesting feature is the existence of equilibrium points with a 1:1 resonance, whose neighbourhood we also describe. The main tools used are the computation of periodic orbits (including their stability and bifurcations), the reduction of the Hamiltonian to centre manifolds at equilibria, and the numerical approximation of invariant tori. It is remarkable how the combination of these techniques allows the description of the dynamics of a 3DoF Hamiltonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. The frequency vector of a quasi-periodic trajectory is determined up to an unimodular transformation.

References

  • Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer Series in Computational Mathematics. Springer, Berlin (1990)

    Book  Google Scholar 

  • Broschart, S.B., Lantoine, G., Grebow, D.J.: Characteristics of Quasi-Terminator Orbits Near Primitive Bodies. Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA (2013)

  • Broschart, S.B., Lantoine, G., Grebow, D.J.: Quasi-terminator orbits near primitive bodies. Celest. Mech. 120(2), 195–215 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Carr, J.: Applications of Centre Manifold Theory. Applied Mathematical Sciences, vol. 35. Springer, New York (1981)

    Book  MATH  Google Scholar 

  • Castellà, E., Jorba, À.: On the vertical families of two-dimensional tori near the triangular points of the bicircular problem. Celest. Mech. 76(1), 35–54 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ceccaroni, M., Celletti, A., Pucacco, G.: Birth of periodic and artificial halo orbits in the restricted three-body problem. Int. J. Non-Linear Mech. 81, 65–74 (2016a)

    Article  ADS  MATH  Google Scholar 

  • Ceccaroni, M., Celletti, A., Pucacco, G.: Halo orbits around the collinear points of the restricted three-body problem. Phys. D 317, 28–42 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25(2), 343–370 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dachwald, B., Seboldt, W., Macdonald, M., Mengali, G., Quarta, A.A., McInnes, C.R., et al.: Potential Solar sail degradation effects on trajectory and attitude control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, vol. 6172, (2005)

  • Dachwald, B., Boehnhardt, H., Broj, U., Geppert, U.R.M.E., Grundmann, J.-T., Seboldt, W., et al.: Gossamer roadmap technology reference study for a multiple NEO rendezvous mission. In: Macdonald, M. (ed.) Advances in Solar Sailing. Springer Praxis Books, pp. 211–226. Springer, Berlin (2014)

    Chapter  Google Scholar 

  • Farrés, A., Jorba, À.: A dynamical system approach for the station keeping of a solar sail. J. Astronaut. Sci. 56(2), 199–230 (2008a)

    Article  ADS  Google Scholar 

  • Farrés, A., Jorba, À.: Solar sail surfing along families of equilibrium points. Acta Astron. 63, 249–257 (2008b)

    Article  Google Scholar 

  • Farrés, A., Jorba, À.: On the high order approximation of the centre manifold for ODEs. Discrete Contin. Dyn. Syst. Ser. B 14(3), 977–1000 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Farrés, A., Jorba, À.: Periodic and quasi-periodic motions of a solar sail close to \(SL_1\) in the Earth–Sun system. Celest. Mech. 107(1–2), 233–253 (2010b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Farrés, A., Jorba, À.: Orbital dynamics of a solar sail near L1 and L2 in the elliptic Hill problem. In: Proceedings of the 63rd International Astronautical Congress (2012)

  • Farrés, A., Jorba, À.: Artificial Equilibria in the RTBP for a Solar Sail and Applications. Springer International Publishing, Cham (2016a)

    Book  MATH  Google Scholar 

  • Farrés, A., Jorba, À.: Dynamics, geometry and solar sails. Indag. Math. 27(5), 1245–1264 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Farrés, A., Jorba, À, Mondelo, J.M.: Orbital dynamics for a non-perfectly reflecting solar sail close to an asteroid. In: Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems, Rome, Italy (2014a)

  • Farrés, A., Jorba, À., Mondelo, J.M., Villac, B.: Periodic motion for an imperfect solar sail near an asteroid. In: Macdonald, M. (ed.) Advances in Solar Sailing, pp. 885–898. Springer, Berlin (2014b)

    Chapter  Google Scholar 

  • Giancotti, M., Funase, R.: Solar sail equilibrium positions and transfer trajectories close to a Trojan asteroid. In: Proceedings of the 63rd International Astronautical Congress (2012)

  • Giancotti, M., Campagnola, S., Tsuda, Y., Kawaguchi, J.: Families of periodic orbits in Hill’s problem with solar radiation pressure: application to hayabusa 2. Celest. Mech. 120(3), 269–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C.: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equ. 77, 167–198 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D 157(4), 283–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Marcote, M., Mondelo, J.M.: The invariant manifold structure of the spatial Hill’s problem. Dyn. Syst. 20(1), 115–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Haro, A., Canadell, M., Luque, A., Mondelo, J.-M., Figueras, J.-L.: The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, volume 195 of Applied Mathematical Sciences. Springer, Berlin (2016)

    MATH  Google Scholar 

  • Hénon, M.: Exploration numérique du problème restreint. II: Masses égales, stabilité des orbites periódiques. Ann. Astrophys. 28(6), 992–1007 (1965)

    ADS  MATH  Google Scholar 

  • Hill, G.W.: Researches in the Lunar Theory. Amer. J. Math. 1(1):5–26, 129–147, 245–260 (1878)

  • Jorba, À.: A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems. Exp. Math. 8(2), 155–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorba, À., Masdemont, J.: Dynamics in the centre manifold of the collinear points of the restricted three body problem. Phys. D 132, 189–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorba, À., Villanueva, J.: On the normal behaviour of partially elliptic lower dimensional tori of Hamiltonian systems. Nonlinearity 10, 783–822 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kanavos, S.S., Markellos, V.V., Perdios, E.A., Douskos, C.N.: The photogravitational Hill problem: numerical exploration. Earth Moon Planets 91(4), 223–241 (2002)

    Article  ADS  MATH  Google Scholar 

  • Liu, K.Y.-Y., Villac, B.: Periodic orbits families in the Hill’s three-body problem with solar radiation pressure. Adv. Astronaut. Sci. 136, 285–300 (2010)

    Google Scholar 

  • Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on Hill stability of orbits. Astrophys. Space Sci. 271(3), 293–301 (2000)

    Article  ADS  MATH  Google Scholar 

  • McInnes, C.R.: Solar Sailing: Technology. Dynamics and Mission Applications. Springer-Praxis, Chichester (1999)

    Book  Google Scholar 

  • Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Morrow, E., Scheeres, D.J., Lubin, D.: Solar sail orbit operations at asteroids. J. Spacecr. Rockets 38(2), 279–286 (2001)

    Article  ADS  Google Scholar 

  • Morrow, E., Scheeres, D.J., Lubin. D.: Solar sail orbit operations at asteroids: exploring the coupled effect of an imperfectly reflecting sail and a nonspherical asteroid. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August (2002)

  • Papadakis, K.E.: The planar photogravitational Hill problem. Internat. J. Bifurc. Chaos Appl. Sci. Eng. 16(06), 1809–1821 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid. Comet and Planetary Satellite Orbiters. Springer, Berlin (2012)

    Book  Google Scholar 

  • Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Grundlehren Math, vol. 187. Wiss. Springer, New York (1971)

  • Sijbrand, J.: Properties of center manifolds. Trans. Am. Math. Soc. 289(2), 431–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Simó, C.: Estabilitat de sistemes Hamiltonians. Mem. Real Acad. Cienc. Artes Barcelona 48(7), 303–348 (1989)

    Google Scholar 

  • Simó, C.: On the analytical and numerical approximation of invariant manifolds. In: Benest, D., Froeschlé, C. (eds.) Modern Methods in Celestial Mechanics. Frontières, Reprinted at. pp. 285–330 (1990) Ed http://www.maia.ub.es/dsg/2004/index.html

  • Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, volume 12 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, Cambridge (1967)

    Google Scholar 

  • Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Dynamics reported, Vol. 2, volume 2 of Dynam. Report. Ser. Dynam. Systems Appl. Wiley, Chichester, pp. 89–169 (1989)

  • Villac, B., Ribalta, G., Farrés, A., Jorba, À., Mondelo, J-M.: Using Solar arrays for orbital control near small bodies. trade-offs characterization. In: AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota (2012)

  • Yárnoz, D.G., Scheeres, D.J., McInnes, C.R.: On the a and and g families of orbits in the Hill problem with solar radiation pressure and their application to asteroid orbiters. Celest. Mech. 121(4), 365–384 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of A.F. and A.J. has been supported by the Spanish Grant MTM2015-67724-P (funded by MINECO/FEDER, UE) and the Catalan Grant 2014 SGR 1145. The research of J.M.M. has been supported by the Spanish Grants MTM2013-41168-P, MTM2014-52209-C2-1-P, MTM2016-80117-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariadna Farrés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrés, A., Jorba, À. & Mondelo, JM. Numerical study of the geometry of the phase space of the Augmented Hill Three-Body problem. Celest Mech Dyn Astr 129, 25–55 (2017). https://doi.org/10.1007/s10569-017-9762-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9762-z

Keywords

Navigation