Time distributions in satellite constellation design

Original Article

Abstract

The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.

Keywords

Satellite constellations Formation flying Orbital perturbations Orbit design 

References

  1. Abad, A.: Astrodinámica. Bubok Publishing S.L., Madrid (2012)Google Scholar
  2. Arnas, D., Casanova, D., Tresaco, E.: Corrections on repeating ground-track orbits and their applications in satellite constellation design, AAS/AIAA 16–224 Space Flight Mechanics Meeting Conference. Napa, CA (2016)Google Scholar
  3. Arnas, D., Casanova, D., Tresaco, E.: Relative and absolute station-keeping for two-dimensional-lattice flower constellations. J. Guid. Control Dyn. 39(11), 2596–2602 (2016). doi:10.2514/1.G000358 ADSCrossRefGoogle Scholar
  4. Avendaño, M.E., Davis, J.J., Mortari, D.: The 2-D lattice theory of flower constellations. Celest. Mech. Dyn. Astron. 116(4), 325–337 (2013). doi:10.1007/s10569-013-9493-8 ADSMathSciNetCrossRefGoogle Scholar
  5. Avendaño, M.E., Davis, J.J., Mortari, D.: The 3-D lattice theory of flower constellations. Celest. Mech. Dyn. Astron. 116(4), 339–356 (2013). doi:10.1007/s10569-013-9494-7 ADSMathSciNetCrossRefGoogle Scholar
  6. Avendaño, M.E., Mortari, D.: New insights on flower constellations theory. J. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1018–1030 (2012). doi:10.1109/TAES.2012.6178046 ADSCrossRefGoogle Scholar
  7. Casanova, D., Avendaño, M.E., Tresaco, E.: Lattice-preserving flower constellations under \(J_2\) perturbations. Celest. Mech. Dyn. Astron. 121(1), 83–100 (2014). doi:10.1007/s10569-014-9583-2 ADSMathSciNetCrossRefGoogle Scholar
  8. Draim, J. E.: A common-period four-satellite continuous global coverage constellation. J. Guid. Control Dyn. 10(5), 492–499 (1987). ISSN 0731-5090Google Scholar
  9. Fortescue, P.W., Stark, J.P.W., Swinerd, G.G.: Spacecraft Systems Engineering, 3rd edn, p. 103. Wiley, New York (2003)Google Scholar
  10. Harris, I., Priester, W.: Theoretical models for the solar-cycle variation of the upper atmosphere. J. Geophys. Res. 67(12), 4585–4591 (1962)ADSCrossRefGoogle Scholar
  11. Harris, I., Priester, W.: Relation between theoretical and observational models of the upper atmosphere. J. Geophys. Res. 68(20), 5891–5894 (1963)ADSCrossRefGoogle Scholar
  12. Mazal, L., Gurfil, P.: Cluster flight algorithms for disaggregated satellites. J. Guid. Control Dyn. 36(1), 124–135 (2013). doi:10.2514/1.57180 ADSCrossRefGoogle Scholar
  13. Mortari, D., Wilkins, M.P., Bruccoleri, C.: The flower constellations. J. Astronaut. Sci. Am. Astronaut. Soc. 52(1–2), 107–127 (2004)MathSciNetGoogle Scholar
  14. National Imagery and Mapping Agency: World Geodetic System 1984. 3rd Edn., National Imagery and Mapping Agency (2000)Google Scholar
  15. Walker, J.G.: Satellite constellations. J. Br. Interplanet. Soc. 37, 559–572 (1984). ISSN 0007-084XGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centro Universitario de la Defensa - ZaragozaGME - IUMA - Universidad de ZaragozaZaragozaSpain

Personalised recommendations