Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 126, Issue 1–3, pp 189–225 | Cite as

Secular and tidal evolution of circumbinary systems

  • Alexandre C. M. CorreiaEmail author
  • Gwenaël Boué
  • Jacques Laskar
Original Article

Abstract

We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.

Keywords

Extended body Dissipative forces Planetary systems Rotation 

Notes

Acknowledgments

We acknowledge support from PNP-CNRS, and from CIDMA strategic Project UID/MAT/04106/2013.

References

  1. Alexander, M.E.: The weak friction approximation and tidal evolution in close binary systems. Astrophys. Space Sci. 23, 459–510 (1973). doi: 10.1007/BF00645172 ADSCrossRefGoogle Scholar
  2. Beaugé, C., Nesvorný, D.: Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751, 119 (2012). doi: 10.1088/0004-637X/751/2/119. arXiv:1110.4392
  3. Bosanac, N., Howell, K.C., Fischbach, E.: Stability of orbits near large mass ratio binary systems. Celest. Mech. Dyn. Astron. 122, 27–52 (2015). doi: 10.1007/s10569-015-9607-6 ADSMathSciNetCrossRefGoogle Scholar
  4. Boué, G., Fabrycky, D.C.: Compact planetary systems perturbed by an inclined companion. II. Stellar spin-orbit evolution. Astrophys. J. 789, 111 (2014). doi: 10.1088/0004-637X/789/2/111. arXiv:1405.7636
  5. Boué, G., Laskar, J.: Precession of a planet with a satellite. Icarus 185, 312–330 (2006). doi: 10.1016/j.icarus.2006.07.019
  6. Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies. Icarus 201, 750–767 (2009). doi: 10.1016/j.icarus.2009.02.001
  7. Brozović, M., Showalter, M.R., Jacobson, R.A., Buie, M.W.: The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015). doi: 10.1016/j.icarus.2014.03.015
  8. Colombo, G.: Cassini’s second and third laws. Astron. J. 71, 891–896 (1966)ADSCrossRefGoogle Scholar
  9. Correia, A.C.M.: Secular evolution of a satellite by tidal effect: application to Triton. Astrophys. J. 704, L1–L4 (2009). doi: 10.1088/0004-637X/704/1/L1. arXiv:0909.4210 ADSCrossRefGoogle Scholar
  10. Correia, A.C.M.: Stellar and planetary Cassini states. Astron. Astrophys. 582, A69 (2015). doi: 10.1051/0004-6361/201525939 ADSCrossRefGoogle Scholar
  11. Correia, A.C.M.: Cassini states for black hole binaries. Mon. Not. R. Astron. Soc 457, L49–L53 (2016). doi: 10.1093/mnrasl/slv198. arXiv:1511.01890 ADSCrossRefGoogle Scholar
  12. Correia, A.C.M., Laskar, J.: Tidal evolution of exoplanets. In: Exoplanets, University of Arizona Press, Tucson, pp. 534–575 (2010)Google Scholar
  13. Correia, A.C.M., Laskar, J., Farago, F., Boué, G.: Tidal evolution of hierarchical and inclined systems. Celest. Mech. Dyn. Astron. 111, 105–130 (2011). doi: 10.1007/s10569-011-9368-9. arXiv:1107.0736
  14. Correia, A.C.M., Boué, G., Laskar, J.: Pumping the eccentricity of exoplanets by tidal effect. Astrophys. J. 744, L23 (2012). doi: 10.1088/2041-8205/744/2/L23. arXiv:1111.5486
  15. Correia, A.C.M., Boué, G., Laskar, J., Morais, M.H.M.: Tidal damping of the mutual inclination in hierarchical systems. Astron. Astrophys. 553, A39 (2013). doi: 10.1051/0004-6361/201220482. arXiv:1303.0864
  16. Correia, A.C.M., Boué, G., Laskar, J., Rodríguez, A.: Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology. Astron. Astrophys. 571, A50 (2014). doi: 10.1051/0004-6361/201424211. arXiv:1411.1860
  17. Correia, A.C.M., Leleu, A., Rambaux, N., Robutel, P.: Spin-orbit coupling and chaotic rotation for circumbinary bodies. Application to the small satellites of the Pluto–Charon system. Astron. Astrophys. 580, L14 (2015). doi: 10.1051/0004-6361/201526800. arXiv:1506.06733
  18. Couetdic, J., Laskar, J., Correia, A.C.M., Mayor, M., Udry, S.: Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits. Astron. Astrophys. 519, A10 (2010). doi: 10.1051/0004-6361/200913635. arXiv:0911.1963 ADSCrossRefGoogle Scholar
  19. Doolin, S., Blundell, K.M.: The dynamics and stability of circumbinary orbits. Mon. Not. R. Astron. Soc. 418, 2656–2668 (2011). doi: 10.1111/j.1365-2966.2011.19657.x. arXiv:1108.4144 ADSCrossRefGoogle Scholar
  20. Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., et al.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011). doi: 10.1126/science.1210923. arXiv:1109.3432 ADSCrossRefGoogle Scholar
  21. Efroimsky, M., Williams, J.G.: Tidal torques: a critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009). doi: 10.1007/s10569-009-9204-7. arXiv:0803.3299 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Eggleton, P.P., Kiseleva-Eggleton, L.: Orbital evolution in binary and triple stars, with an application to SS Lacertae. Astrophys. J. 562, 1012–1030 (2001). doi: 10.1086/323843. arXiv:astro-ph/0104126 ADSCrossRefGoogle Scholar
  23. Farago, F., Laskar, J.: High-inclination orbits in the secular quadrupolar three-body problem. Mon. Not. R. Astron. Soc. 401, 1189–1198 (2010). doi: 10.1111/j.1365-2966.2009.15711.x. arXiv:0909.2287 ADSCrossRefGoogle Scholar
  24. Ferraz-Mello, S.: Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest. Mech. Dyn. Astron. 116, 109–140 (2013). doi: 10.1007/s10569-013-9482-y. arXiv:1204.3957 ADSMathSciNetCrossRefGoogle Scholar
  25. Ford, E.B., Joshi, K.J., Rasio, F.A., Zbarsky, B.: Theoretical implications of the PSR B1620–26 triple system and its planet. Astrophys. J. 528, 336–350 (2000a). doi: 10.1086/308167. arXiv:astro-ph/9905347
  26. Ford, E.B., Kozinsky, B., Rasio, F.A.: Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385–401 (2000b). doi: 10.1086/308815 ADSCrossRefGoogle Scholar
  27. Goldreich, P.: History of the lunar orbit. Rev. Geophys. Space Phys. 4, 411–439 (1966). doi: 10.1029/RG004i004p00411 ADSCrossRefGoogle Scholar
  28. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950)zbMATHGoogle Scholar
  29. Harrington, R.S.: Dynamical evolution of triple stars. Astron. J. 73, 190–194 (1968). doi: 10.1086/110614 ADSCrossRefGoogle Scholar
  30. Hut, P.: Stability of tidal equilibrium. Astron. Astrophys. 92, 167–170 (1980)ADSMathSciNetzbMATHGoogle Scholar
  31. Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–685 (1964)ADSCrossRefGoogle Scholar
  32. Kennedy, G.M., Wyatt, M.C., Sibthorpe, B., Duchêne, G., Kalas, P., Matthews, B.C., et al.: 99 Herculis: host to a circumbinary polar-ring debris disc. Mon. Not. R. Astron. Soc. 421, 2264–2276 (2012). doi: 10.1111/j.1365-2966.2012.20448.x. arXiv:1201.1911
  33. Kidder, L.E.: Coalescing binary systems of compact objects to (post)\(^{5/2}\)-newtonian order. V. spin effects. Phys. Rev. D 52, 821–847 (1995). doi: 10.1103/PhysRevD.52.821. arXiv:gr-qc/9506022 ADSCrossRefGoogle Scholar
  34. Kostov, V.B., Orosz, J.A., Welsh, W.F., Doyle, L.R., Fabrycky, D.C., Haghighipour, N., et al.: KOI-2939b: the largest and longest-period Kepler transiting circumbinary planet. arXiv:1512.00189 (2015)
  35. Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962). doi: 10.1086/108790 ADSMathSciNetCrossRefGoogle Scholar
  36. Lainey, V., Arlot, J.E., Karatekin, Ö., van Hoolst, T.: Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009). doi: 10.1038/nature08108
  37. Lainey, V., Karatekin, Ö., Desmars, J., Charnoz, S., Arlot, J.E., Emelyanov, N., et al.: Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752, 14 (2012). doi: 10.1088/0004-637X/752/1/14. arXiv:1204.0895
  38. Lambeck, K.: Geophysical geodesy: the slow deformations of the earth Lambeck. Clarendon Press and Oxford University Press, Oxford [England] and New York (1988)Google Scholar
  39. Laskar, J.: On the spacing of planetary systems. Phys. Rev. Lett. 84, 3240–3243 (2000)ADSCrossRefGoogle Scholar
  40. Laskar, J., Boué, G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522, A60 (2010). doi: 10.1051/0004-6361/201014496. arXiv:1008.2947
  41. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004). doi: 10.1051/0004-6361:20041335 ADSCrossRefGoogle Scholar
  42. Lee, M.H., Peale, S.J.: Secular evolution of hierarchical planetary systems. Astrophys. J. 592, 1201–1216 (2003). doi: 10.1086/375857. arXiv:astro-ph/0304454 ADSCrossRefGoogle Scholar
  43. Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Plan. Space Sci. 9, 719–759 (1962). doi: 10.1016/0032-0633(62)90129-0 ADSCrossRefGoogle Scholar
  44. Lidov, M.L., Ziglin, S.L.: Non-restricted double-averaged three body problem in Hill’s case. Celest. Mech. 13, 471–489 (1976). doi: 10.1007/BF01229100 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. MacDonald, G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)ADSCrossRefGoogle Scholar
  46. Makarov, V.V.: Equilibrium rotation of semiliquid exoplanets and satellites. arXiv:1507.07383 (2015)
  47. Marchal, C.: The Three-Body Problem. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  48. Martin, D.V., Triaud, A.H.M.J.: Planets transiting non-eclipsing binaries. Astron. Astrophys. 570, A91 (2014). doi: 10.1051/0004-6361/201323112. arXiv:1404.5360 ADSCrossRefGoogle Scholar
  49. Migaszewski, C.: The generalized non-conservative model of a 1-planet system revisited. Celest. Mech. Dyn. Astron. 113, 169–203 (2012). doi: 10.1007/s10569-012-9413-3. arXiv:1203.2358 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. Migaszewski, C., Goździewski, K.: The non-resonant, relativistic dynamics of circumbinary planets. Mon. Not. R. Astron. Soc. 411, 565–583 (2011). doi: 10.1111/j.1365-2966.2010.17702.x. arXiv:1006.5961
  51. Mignard, F.: The evolution of the lunar orbit revisited I. Moon Planets 20, 301–315 (1979)ADSCrossRefzbMATHGoogle Scholar
  52. Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Hot Jupiters from secular planet–planet interactions. Nature 473, 187–189 (2011). doi: 10.1038/nature10076. arXiv:1011.2501
  53. Orosz, J.A., Welsh, W.F., Carter, J.A., Brugamyer, E., Buchhave, L.A., Cochran, W.D., et al.: The Neptune-sized circumbinary planet Kepler-38b. Astrophys. J. 758, 87 (2012a). doi: 10.1088/0004-637X/758/2/87. arXiv:1208.3712 ADSCrossRefGoogle Scholar
  54. Orosz, J.A., Welsh, W.F., Carter, J.A., Fabrycky, D.C., Cochran, W.D., Endl, M., et al.: Kepler-47: a transiting circumbinary multiplanet system. Science 337, 1511 (2012a). doi: 10.1126/science.1228380. arXiv:1208.5489 ADSCrossRefGoogle Scholar
  55. Penev, K., Jackson, B., Spada, F., Thom, N.: Constraining tidal dissipation in stars from the destruction rates of exoplanets. Astrophys. J. 751, 96 (2012). doi: 10.1088/0004-637X/751/2/96. arXiv:1205.1803 ADSCrossRefGoogle Scholar
  56. Plavchan, P., Güth, T., Laohakunakorn, N., Parks, J.R.: The identification of 93 day periodic photometric variability for YSO YLW 16A. Astron. Astrophys. 554, A110 (2013). doi: 10.1051/0004-6361/201220747. arXiv:1304.2398
  57. Poincaré, H.: Leçons de Mécanique Céleste, Tome I. Gauthier-Villars, Paris (1905)Google Scholar
  58. Singer, S.F.: The origin of the moon and geophysical consequences. Geophys. J. R. Astron. Soc. 15, 205–226 (1968)CrossRefGoogle Scholar
  59. Skumanich, A.: Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565 (1972). doi: 10.1086/151310 ADSCrossRefGoogle Scholar
  60. Smart, W.M.: Celestial Mechanics. Longmans, Green, London, New York (1953)zbMATHGoogle Scholar
  61. Touma, J.R., Tremaine, S., Kazandjian, M.V.: Gauss’s method for secular dynamics, softened. Mon. Not. R. Astron. Soc. 394, 1085–1108 (2009). doi: 10.1111/j.1365-2966.2009.14409.x. arXiv:0811.2812 ADSCrossRefGoogle Scholar
  62. Verrier, P.E., Evans, N.W.: High-inclination planets and asteroids in multistellar systems. Mon. Not. R. Astron. Soc. 394, 1721–1726 (2009). doi: 10.1111/j.1365-2966.2009.14446.x. arXiv:0812.4528 ADSCrossRefGoogle Scholar
  63. Ward, W.R.: Tidal friction and generalized Cassini’s laws in the solar system. Astron. J. 80, 64–70 (1975)ADSCrossRefGoogle Scholar
  64. Ward, W.R., Hamilton, D.P.: Tilting Saturn I. Analytic model. Astron. J. 128, 2501–2509 (2004). doi: 10.1086/424533 ADSCrossRefGoogle Scholar
  65. Welsh, W.F., Orosz, J.A., Carter, J.A., Fabrycky, D.C., Ford, E.B., Lissauer, J.J., et al.: Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475–479 (2012). doi: 10.1038/nature10768. arXiv:1204.3955 ADSCrossRefGoogle Scholar
  66. Winn, J.N., Albrecht, S., Johnson, J.A., Torres, G., Cochran, W.D., Marcy, G.W., et al.: Spin-orbit alignment for the circumbinary planet host Kepler-16 A. Astrophys. J. 741, L1 (2011). doi: 10.1088/2041-8205/741/1/L1. arXiv:1109.3198
  67. Yoder, C.F.: Astrometric and geodetic properties of Earth and the Solar System. Global Earth Physics: A Handbook of Physical Constants, pp. 1–31. American Geophysical Union, Washington D.C. (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CIDMA, Departamento de FísicaUniversidade de AveiroAveiroPortugal
  2. 2.ASD, IMCCE-CNRS UMR8028Obs. ParisParisFrance

Personalised recommendations