Celestial Mechanics and Dynamical Astronomy

, Volume 124, Issue 4, pp 405–432 | Cite as

Secular dynamics of S-type planetary orbits in binary star systems: applicability domains of first- and second-order theories

  • Eduardo Andrade-Ines
  • Cristian Beaugé
  • Tatiana Michtchenko
  • Philippe Robutel
Original Article

Abstract

We analyse the secular dynamics of planets on S-type coplanar orbits in tight binary systems, based on first- and second-order analytical models, and compare their predictions with full N-body simulations. The perturbation parameter adopted for the development of these models depends on the masses of the stars and on the semimajor axis ratio between the planet and the binary. We show that each model has both advantages and limitations. While the first-order analytical model is algebraically simple and easy to implement, it is only applicable in regions of the parameter space where the perturbations are sufficiently small. The second-order model, although more complex, has a larger range of validity and must be taken into account for dynamical studies of some real exoplanetary systems such as \(\gamma \) Cephei and HD 41004A. However, in some extreme cases, neither of these analytical models yields quantitatively correct results, requiring either higher-order theories or direct numerical simulations. Finally, we determine the limits of applicability of each analytical model in the parameter space of the system, giving an important visual aid to decode which secular theory should be adopted for any given planetary system in a close binary.

Keywords

Secular dynamics Binary star Second-order Perturbation theory Planets in binaries 

Notes

Acknowledgments

Part of this work was developed during a visit of E.A-I. to the Universidad Nacional de Cordoba. We wish to express our gratitude to FAPESP (Grants 2010/01209-2 and 2013/17102-0), CNPq, CONICET and Secyt/UNC for their support.

Supplementary material

10569_2015_9669_MOESM1_ESM.dat (352 kb)
Supplementary material 1 (dat 351 KB)
10569_2015_9669_MOESM2_ESM.dat (63 kb)
Supplementary material 2 (dat 62 KB)

References

  1. Abt, H.A.: The frequencies of binaries on the main sequence. Astron. J. 84, 1591 (1979)ADSCrossRefGoogle Scholar
  2. Andrade-Ines, E., Michtchenko, T.A.: Dynamical stability of terrestrial planets in the binary \(\alpha \) Centauri system. Mon. Not. R. Astron. Soc. 444, 2167 (2014)ADSCrossRefGoogle Scholar
  3. Boss, A.P.: Gas giant protoplanets formed by disk instability in binary star systems. Astrophys. J. 641, 1148 (2006)ADSCrossRefGoogle Scholar
  4. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)MATHGoogle Scholar
  5. Chauvin, G., Beust, H., Lagrange, A.-M., Eggenberger, A.: Planetary systems in close binary stars: the case of HD 196885. Combined astrometric and radial velocity study. Astron. Astrophys. 528, A8 (2011)ADSCrossRefGoogle Scholar
  6. Couetdic, J., Laskar, J., Correia, A.C.M., Mayor, M., Udry, S.: Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits. Astron. Astrophys. 519, A10 (2010)ADSCrossRefGoogle Scholar
  7. Dumusque, X., Pepe, F., Lovis, C., et al.: An Earth-mass planet orbiting \(\alpha \) Centauri B. Nature 491, 207 (2012)ADSCrossRefGoogle Scholar
  8. Duquennoy, A., Mayor, M.: Multiplicity among solar-type stars in the solar neighbourhood. II—Distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 248, 485 (1991)ADSGoogle Scholar
  9. Dvorak, R.: Numerical experiments on planetary orbits in double stars. Celest. Mech. 34, 369–378 (1984)ADSCrossRefMATHGoogle Scholar
  10. Eberle, J., Cuntz, M.: On the reality of the suggested planet in the \(\nu \) octantis system. Astrophys. J. 721, L168 (2010)ADSCrossRefGoogle Scholar
  11. Eggenberger, A., Udry, S.: Probing the impact of stellar duplicity on planet occurrence with spectroscopic and imaging observations. Planets Bin. Star Syst. 366, 19 (2010)Google Scholar
  12. Ellis, K.-M., Murray, C.-D.: The disturbing function in solar system dynamics. Icarus. 147, 129–144 (2000)Google Scholar
  13. Endl, M., Cochran, W.D., Hatzes, A.P., Wittenmyer, R.A.: News from the \(\gamma \) Cephei planetary system. Am. Inst. Phys. Conf. Ser. 1331, 88 (2011)ADSGoogle Scholar
  14. Farihi, J., Bond, H.E., Dufour, P., et al.: Orbital and evolutionary constraints on the planet hosting binary GJ 86 from the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 430, 652 (2013)ADSCrossRefGoogle Scholar
  15. Ferraz-Mello, S.: Canonical Perturbation Theories—Degenerate Systems and Resonance. Springer, New York (2007)CrossRefMATHGoogle Scholar
  16. Ford, E.B., Kozinsky, B., Rasio, F.A.: Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385 (2000)ADSCrossRefGoogle Scholar
  17. Georgakarakos, N.: Eccentricity evolution in hierarchical triple systems with eccentric outer binaries. Mon. Not. R. Astron. Soc. 345, 340 (2003)ADSCrossRefGoogle Scholar
  18. Georgakarakos, N.: Erratum: Eccentricity evolution in hierarchical triple systems with eccentric outer binaries. Mon. Not. R. Astron. Soc. 362, 748 (2005)ADSCrossRefGoogle Scholar
  19. Giuppone, C.A., Leiva, A.M., Correa-Otto, J., Beaugé, C.: Secular dynamics of planetesimals in tight binary systems: application to \(\gamma \)-Cephei. Astron. Astrophys. 530, A103 (2011)ADSCrossRefGoogle Scholar
  20. Giuppone, C.A., Morais, M.H.M., Boué, G., Correia, A.C.M.: Dynamical analysis and constraints for the HD 196885 system. Astron. Astrophys. 541, A151 (2012)ADSCrossRefGoogle Scholar
  21. Goździewski, K., Słonina, M., Migaszewski, C., Rozenkiewicz, A.: Testing a hypothesis of the \(\nu \) Octantis planetary system. Mon. Not. R. Astron. Soc. 430, 533 (2013)ADSCrossRefGoogle Scholar
  22. Hatzes, A.P.: The radial velocity detection of earth-mass planets in the presence of activity noise: the case of \(\alpha \) Centauri Bb. Astrophys. J. 770, 133 (2013)ADSCrossRefGoogle Scholar
  23. Haghighipour, N.: Dynamical stability and habitability of the \(\gamma \) Cephei binary-planetary system. Astrophys. J. 644, 543 (2006)ADSCrossRefGoogle Scholar
  24. Heppenheimer, T.A.: On the formation of planets in binary star systems. Astron. Astrophys. 65, 421 (1978)ADSGoogle Scholar
  25. Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. Astron. J. 117, 621 (1999)ADSCrossRefGoogle Scholar
  26. Hori, G.: Theory of general perturbation with unspecified canonical variable. Publ. Astron. Soc. Jpn. 18, 287 (1966)ADSGoogle Scholar
  27. Howard, A.W., Johnson, J.A., Marcy, G.W., et al.: The California planet survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467 (2010)ADSCrossRefGoogle Scholar
  28. Hughes, S.: The computation of tables of Hansen coefficients. Celest. Mech. 25, 101 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67, 300 (1962)ADSMathSciNetCrossRefGoogle Scholar
  30. Kley, W., Nelson, R.P.: Planet formation in binary stars: the case of \(\gamma \) Cephei. Astron. Astrophys. 486, 617 (2008)ADSCrossRefGoogle Scholar
  31. Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266 (1990)ADSCrossRefGoogle Scholar
  32. Laskar, J.: Introduction to Frequency Map Analysis, Hamiltonian Systems with Three or More Degrees of Freedom. Springer, New York (1999)Google Scholar
  33. Laskar, J., Boué, G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522, A60 (2010)ADSCrossRefMATHGoogle Scholar
  34. Libert, A.-S., Sansottera, M.: On the extension of the Laplace–Lagrange secular theory to order two in the masses for extrasolar systems. Celest. Mech. Dyn. Astron. 117, 149 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. Martí, J.G., Beaugé, C.: Stellar scattering and the origin of the planet around \(\gamma \)-Cephei-A. Astron. Astrophys. 544, A97 (2012)ADSCrossRefGoogle Scholar
  36. Martí, J.G., Beaugé, C.: Stellar scattering and the formation of hot Jupiters in binary systems. Int. J. Astrobiol. 14, 313 (2015)CrossRefGoogle Scholar
  37. Michtchenko, T.A., Ferraz-Mello, S.: Modeling the 5: 2 mean-motion resonance in the Jupiter–Saturn planetary system. Icarus 149, 357 (2001)ADSCrossRefGoogle Scholar
  38. Michtchenko, T.A., Ferraz-Mello, S., Beaugé, C.: Modeling the 3-D secular planetary three-body problem. Discussion on the outer \(\upsilon \) Andromedae planetary system. Icarus 181, 555 (2006)ADSCrossRefGoogle Scholar
  39. Michtchenko, T.A., Lazzaro, D., Ferraz-Mello, S., Roig, F.: Origin of the basaltic asteroid 1459 Magnya: a dynamical and mineralogical study of the outer main belt. Icarus 158, 343 (2002)ADSCrossRefGoogle Scholar
  40. Michtchenko, T.A., Malhotra, R.: Secular dynamics of the three-body problem: application to the \(\upsilon \) Andromedae planetary system. Icarus 168, 237 (2004)ADSCrossRefGoogle Scholar
  41. Michtchenko, T.A., Rodríguez, A.: Modelling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. 415, 2275 (2011)ADSCrossRefGoogle Scholar
  42. Morais, M.H.M., Correia, A.C.M.: Precession due to a close binary system: an alternative explanation for \(\nu \)-Octantis? Mon. Not. R. Astron. Soc. 419, 3447 (2012)ADSCrossRefGoogle Scholar
  43. Morais, M.H.M., Giuppone, C.A.: Stability of prograde and retrograde planets in circular binary systems. Mon. Not. R. Astron. Soc. 424, 52 (2012)ADSCrossRefGoogle Scholar
  44. Nelson, A.F.: Planet formation is unlikely in equal-mass binary systems with A \(\tilde{\,}50\) AU. Astrophys. J. 537, L65 (2000)ADSCrossRefGoogle Scholar
  45. Neuhäuser, R., Mugrauer, M., Fukagawa, M., Torres, G., Schmidt, T.: Direct detection of exoplanet host star companion \(\gamma \) Cep B and revised masses for both stars and the sub-stellar object. Astron. Astrophys. 462, 777 (2007)ADSCrossRefGoogle Scholar
  46. Noyelles, B., Lemaître, A., Vienne, A.: Titan’s rotation. A 3-dimensional theory. Astron. Astrophys. 478, 959 (2008)ADSCrossRefGoogle Scholar
  47. Pilat-Lohinger, E., Dvorak, R.: Stability of S-type orbits in binaries. Celest. Mech. Dyn. Astron. 82, 143 (2002)ADSCrossRefMATHGoogle Scholar
  48. Plummer, H.C.K.: An Introductory Treatise on Dynamical Astronomy. University Press, Cambridge (1918)Google Scholar
  49. Pourbaix, D., Neuforge-Verheecke, C., Noels, A.: Revised masses of alpha Centauri. Astron. Astrophys. 344, 172 (1999)ADSGoogle Scholar
  50. Quarles, B., Cuntz, M., Musielak, Z.E.: The stability of the suggested planet in the \(\nu \) Octantis system: a numerical and statistical study. Mon. Not. R. Astron. Soc. 421, 2930 (2012)ADSCrossRefGoogle Scholar
  51. Queloz, D., Mayor, M., Weber, L., et al.: The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. Astron. Astrophys. 354, 99 (2000)ADSGoogle Scholar
  52. Rabl, G., Dvorak, R.: Satellite-type planetary orbits in double stars—a numerical approach. Astron. Astrophys. 191, 385 (1988)ADSGoogle Scholar
  53. Ramm, D.J., Pourbaix, D., Hearnshaw, J.B., Komonjinda, S.: Spectroscopic orbits for K giants \(\beta \) Reticuli and \(\nu \) Octantis: what is causing a low-amplitude radial velocity resonant perturbation in \(\nu \) Oct? Mon. Not. R. Astron. Soc. 394, 1695 (2009)ADSCrossRefGoogle Scholar
  54. Raghavan, D., McAlister, H.A., Henry, T.J., et al.: A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190, 1 (2010)ADSCrossRefGoogle Scholar
  55. Reffert, S., Quirrenbach, A.: Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: nine confirmed planets and two confirmed brown dwarfs. Astron. Astrophys. 527, A140 (2011)ADSCrossRefGoogle Scholar
  56. Robutel, P., Laskar, J.: Frequency map and global dynamics in the solar system I. Short period dynamics of massless particles. Icarus 152, 4 (2001)ADSCrossRefGoogle Scholar
  57. Roell, T., Neuhäuser, R., Seifahrt, A., Mugrauer, M.: Extrasolar planets in stellar multiple systems. Astron. Astrophys. 542, A92 (2012)ADSCrossRefGoogle Scholar
  58. Santerne, A., Hébrard, G., Deleuil, M., et al.: SOPHIE velocimetry of Kepler transit candidates. XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet. Astron. Astrophys. 571, A37 (2014)ADSCrossRefGoogle Scholar
  59. Santos, N.C., Mayor, M., Naef, D., et al.: The CORALIE survey for southern extra-solar planets. IX. A 1.3-day period brown dwarf disguised as a planet. Astron. Astrophys. 392, 215 (2002)ADSCrossRefGoogle Scholar
  60. Satyal, S., Hinse, T.C., Quarles, B., Noyola, J.P.: Chaotic dynamics of the planet in HD 196885 AB. Mon. Not. R. Astron. Soc. 443, 1310 (2014)ADSCrossRefGoogle Scholar
  61. Silsbee, K., Rafikov, R.R.: Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. Astrophys. J. 798, 71 (2015)ADSCrossRefGoogle Scholar
  62. Thebault, P.: Against all odds? Forming the planet of the HD 196885 binary. Celest. Mech. Dyn. Astron. 111, 29 (2011)ADSCrossRefMATHGoogle Scholar
  63. Thébault, P., Marzari, F., Scholl, H.: Relative velocities among accreting planetesimals in binary systems: the circumprimary case. Icarus 183, 193 (2006)ADSCrossRefGoogle Scholar
  64. Thébault, P., Marzari, F., Scholl, H.: Planet formation in the habitable zone of \(\alpha \) Centauri B. Mon. Not. R. Astron. Soc. 393, L21 (2009)ADSCrossRefGoogle Scholar
  65. Thébault, P., Marzari, F., Scholl, H., Turrini, D., Barbieri, M.: Planetary formation in the \(\gamma \) Cephei system. Astron. Astrophys. 427, 1097 (2004)ADSCrossRefGoogle Scholar
  66. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. University Press, Cambridge (1963)MATHGoogle Scholar
  67. Zucker, S., Mazeh, T., Santos, N.C., Udry, S., Mayor, M.: Multi-order TODCOR: application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004. Astron. Astrophys. 426, 695 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Eduardo Andrade-Ines
    • 1
    • 2
  • Cristian Beaugé
    • 3
  • Tatiana Michtchenko
    • 2
  • Philippe Robutel
    • 1
  1. 1.Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE)ParisFrance
  2. 2.Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG)Universidade de São PauloSão PauloBrazil
  3. 3.Observatorio Astronómico de Cordoba (OAC)Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations