Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 124, Issue 3, pp 311–334 | Cite as

Dynamics of the 3/1 planetary mean-motion resonance: an application to the HD60532 b-c planetary system

  • A. J. AlvesEmail author
  • T. A. Michtchenko
  • M. Tadeu dos Santos
Original Article

Abstract

In this paper, we use a semi-analytical approach to analyze the global structure of the phase space of the planar planetary 3/1 mean-motion resonance. The case where the outer planet is more massive than its inner companion is considered. We show that the resonant dynamics can be described using two fundamental parameters, the total angular momentum and the spacing parameter. The topology of the Hamiltonian function describing the resonant behaviour is investigated on a large domain of the phase space without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The families of the Apsidal Corotation Resonances (ACR) parameterized by the planetary mass ratio are obtained and their stability is analyzed. The main dynamical features in the domains around the ACR are also investigated in detail by means of spectral analysis techniques, which allow us to detect the regions of different regimes of motion of resonant systems. The construction of dynamical maps for various values of the total angular momentum shows the evolution of domains of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems.

Keywords

Exoplanetary systems Resonant dynamics Periodic orbits Apsidal corotation resonance (ACR) Spacing parameter Libration 

Notes

Acknowledgments

This work has been supported by the Brazilian National Research Council - CNPq (Grant 153713/2010-0). The authors are grateful to Prof. Dr. S. Ferraz-Mello, Dr. J. Correa-Otto, Dr. E. Andrade-Ines, and Dr. C. Beaugé, for numerous suggestions and corrections to this paper. This work has made use of the facilities of the Computation Center of the University of São Paulo (LCCA-USP) and of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (Grant 2009/54006-4) and the INCT-A.

References

  1. Antoniadou, K.I., Voyatzis, G.: Resonant periodic orbits in the exoplanetary systems. Astrophys. Space. Sci. 349, 657–676 (2014)CrossRefADSGoogle Scholar
  2. Beauge, C., Ferraz-Mello, S.: Resonance trapping in the primordial solar nebula: the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)CrossRefADSGoogle Scholar
  3. Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. Astrophys. J. 593, 1124–1133 (2003)CrossRefADSGoogle Scholar
  4. Beaugé, C., Michtchenko, T.A.: Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. Mon. Not. R. Astron. Soc. 341, 760–770 (2003)CrossRefADSGoogle Scholar
  5. Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Mon. Not. R. Astron. Soc. 365, 1160–1170 (2006)CrossRefADSGoogle Scholar
  6. Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems—detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)CrossRefADSGoogle Scholar
  7. Bonfils, X., et al.: The HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone. Astron. Astrophys. 556, A110 (2013)CrossRefADSGoogle Scholar
  8. Callegari Jr, N., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in the 2/1 mean-motion resonance. Celest. Mech. Dyn. Astron. 89, 201–234 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. Callegari, N., Ferraz-Mello, S., Michtchenko, T.A.: Dynamics of two planets in the 3/2 mean-motion resonance: application to the planetary system of the pulsar PSR B1257+12. Celest. Mech. Dyn. Astron. 94, 381–397 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. Dawson, R.I., Fabrycky, D.C.: Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)CrossRefADSGoogle Scholar
  11. Desort, M., Lagrange, A.-M., Galland, F., Beust, H., Udry, S., Mayor, M., Lo Curto, G.: Extrasolar planets and brown dwarfs around A-F type stars. V. A planetary system found with HARPS around the F6IV-V star HD 60532. Astron. Astrophys. 491, 883–888 (2008)Google Scholar
  12. Ferraz-Mello, S.: The high-eccentricity libration of the Hildas. Astron. J. 96, 400–408 (1988)CrossRefADSGoogle Scholar
  13. Ferraz-Mello, S., Beaugé, C., Michtchenko, T.A.: Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron. 87, 99–112 (2003)CrossRefADSGoogle Scholar
  14. Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari, N.: Extrasolar planetary systems. In: Dvorak et al. (eds.) Chaos and Stability in Planetary Systems. Lecture Notes in Physics, vol. 683, pp. 219–271. Springer (2005)Google Scholar
  15. Gautier III, T.N., et al.: Kepler-20: a sun-like star with three sub-neptune exoplanets and two earth-size candidates. Astrophys. J. 749, 15 (2012)CrossRefADSGoogle Scholar
  16. Goldreich, P., Tremaine, S.: The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857–871 (1979)CrossRefADSMathSciNetGoogle Scholar
  17. Goldreich, P., Tremaine, S.: Disk–satellite interactions. Astrophys. J. 241, 425–441 (1980)CrossRefADSMathSciNetGoogle Scholar
  18. Gomes, R.S.: The effect of nonconservative forces on resonance lock: stability and instability. Icarus 115, 47–59 (1995a)CrossRefADSGoogle Scholar
  19. Gomes, R.S.: Resonance trapping and evolution of particles subject to Poynting–Robertson drag: adiabatic and non-adiabatic approaches. Celest. Mech. Dyn. Astron. 61, 97–113 (1995b)CrossRefADSzbMATHGoogle Scholar
  20. Han, E., Wang, S.X., Wright, J.T., Feng, Y.K., Zhao, M., Fakhouri, O., Brown, J.I., Hancock, C.: Exoplanet Orbit Database. II. Updates to Exoplanets.org. Publ. Astron. Soc. Pac. 126, 827–837 (2014)CrossRefADSGoogle Scholar
  21. Kane, S.R., Gelino, D.M.: On the inclination and habitability of the HD 10180 system. Astrophys. J. 792, 111 (2014)CrossRefADSGoogle Scholar
  22. Kley, W.: On the migration of a system of protoplanets. Mon. Not. R. Astron. Soc. 313, L47–L51 (2000)CrossRefADSGoogle Scholar
  23. Kley, W., Lee, M.H., Murray, N., Peale, S.J.: Modeling the resonant planetary system GJ 876. Astron. Astrophys. 437, 727–742 (2005)CrossRefADSGoogle Scholar
  24. Laskar, J.: Analytical Framework in Poincaré Variables for the Motion of the Solar System, In: Roy, A.E. (ed.) Predictability, Stability, and Chaos in N-Body Dynamical Systems, pp. 93–114. Plenum Press, New York (1991)Google Scholar
  25. Laskar, J., Correia, A.C.M.: HD 60532, a planetary system in a 3:1 mean motion resonance. Astron. Astrophys. 496, L5–L8 (2009)CrossRefADSGoogle Scholar
  26. Laskar, J., Robutel, P.: Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. Lee, M.H.: Diversity and origin of 2:1 orbital resonances in extrasolar planetary systems. Astrophys. J. 611, 517–527 (2004)CrossRefADSGoogle Scholar
  28. Lin, D.N.C., Papaloizou, J.: Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc. 186, 799–812 (1979)CrossRefADSzbMATHGoogle Scholar
  29. Lovis, C., et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011)CrossRefADSGoogle Scholar
  30. Marzari, F., Scholl, H., Tricarico, P.: Frequency map analysis of the 3/1 resonance between planets b and c in the 55 Cancri system. Astron. Astrophys. 442, 359–364 (2005)CrossRefADSGoogle Scholar
  31. Mayor, M., et al.: The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets, ArXiv e-prints arXiv:1109.2497 (2011)
  32. Michtchenko, T.A., Ferraz-Mello, S.: Comparative study of the asteroidal motion in the 3:2 and 2:1 resonances with Jupiter. I. Planar model. Astron. Astrophys. 303, 945 (1995)ADSGoogle Scholar
  33. Michtchenko, T.A., Ferraz-Mello, S.: Modeling the 5:2 mean-motion resonance in the Jupiter–Saturn planetary system. Icarus 149, 357–374 (2001a)CrossRefADSGoogle Scholar
  34. Michtchenko, Ferraz-Mello, : Resonant structure of the outer solar system in the neighborhood of the planets. Astron. J. 122, 474–481 (2001b)CrossRefADSGoogle Scholar
  35. Michtchenko, T.A., Lazzaro, D., Ferraz-Mello, S., Roig, F.: Origin of the basaltic asteroid 1459 Magnya: a dynamical and mineralogical study of the outer main belt. Icarus 158, 343–359 (2002)CrossRefADSGoogle Scholar
  36. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astron. 94, 411–432 (2006)CrossRefADSzbMATHGoogle Scholar
  37. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—I. Systems with a more massive outer planet. Mon. Not. R. Astron. Soc. 387, 747–758 (2008a)Google Scholar
  38. Michtchenko, T.A., Beaugé, C., Ferraz-Mello, S.: Dynamic portrait of the planetary 2/1 mean-motion resonance—II. Systems with a more massive inner planet. Mon. Not. R. Astron. Soc. 391, 215–227 (2008b)CrossRefADSGoogle Scholar
  39. Michtchenko, T.A., Rodríguez, A.: Modelling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. 415, 2275–2292 (2011)CrossRefADSGoogle Scholar
  40. Moons, M., Morbidelli, A.: The main mean motion commensurabilities in the planar circular and elliptic problem. Celest. Mech. Dyn. Astron. 57, 99–108 (1993)CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. Nelson, B.E., Ford, E.B., Wright, J.T., et al.: The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis. Mon. Not. R. Astron. Soc. 441, 442–451 (2014)CrossRefADSGoogle Scholar
  42. Sándor, Z., Kley, W.: Formation of the resonant system HD 60532. Astron. Astrophys. 517, A31 (2010)CrossRefGoogle Scholar
  43. Snellgrove, M.D., Papaloizou, J.C.B., Nelson, R.P.: On disc driven inward migration of resonantly coupled planets with application to the system around GJ876. Astron. Astrophys. 374, 1092–1099 (2001)CrossRefADSGoogle Scholar
  44. Tadeu dos Santos, M., Silva, G.G., Ferraz-Mello, S., Michtchenko, T.A.: A new analysis of the GJ581 extrasolar planetary system. Celest. Mech. Dyn. Astron. 113, 49–62 (2012)CrossRefADSGoogle Scholar
  45. Tuomi, M.: Evidence for nine planets in the HD 10180 system. Astron. Astrophys. 543, A52 (2012)CrossRefADSGoogle Scholar
  46. Voyatzis, G., Hadjidemetriou, J.D.: Symmetric and asymmetric librations in planetary and satellite systems at the 2/1 resonance. Celest. Mech. Dyn. Astron. 93, 263–294 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  47. Voyatzis, G., Hadjidemetriou, J.D.: Symmetric and asymmetric 3:1 resonant periodic orbits with an application to the 55Cnc extra-solar system. Celest. Mech. Dyn. Astron. 95, 259–271 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. Voyatzis, G.: Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675(1), 802–816 (2008)CrossRefADSGoogle Scholar
  49. Zhou, L.Y., Lehto, H.J., Zheng, J.Q.: The 3:1 resonance in the 55 Cancri. Order Chaos Stellar Planet. Syst. 316, 155 (2004)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. J. Alves
    • 1
    Email author
  • T. A. Michtchenko
    • 1
  • M. Tadeu dos Santos
    • 1
  1. 1.Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG)Universidade de São PauloSão PauloBrazil

Personalised recommendations