Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 124, Issue 2, pp 177–199 | Cite as

Broad search for unstable resonant orbits in the planar circular restricted three-body problem

  • Rodney L. Anderson
  • Stefano Campagnola
  • Gregory Lantoine
Original Article

Abstract

Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques. In this study, several methods for computing these unstable resonant orbits are explored including grid searches, flyby maps, and continuation. Families of orbits are computed focusing on orbits with multiple loops near the secondary in the Jupiter–Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonant orbits, and the continuation of several specific orbits is explored in more detail.

Keywords

Resonant orbits Dynamical systems theory Orbit families Continuation Three-body problem Stability CWIC 

Notes

Acknowledgments

The research presented here has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding for this research came from AMMOS/MGSS under the “Tour and Endgame Design using Invariant Manifolds” study. The authors would like to thank Martin Lo, Jon Sims, Try Lam, and Channing Chow for their helpful comments and conversations. They would also like to thank the anonymous reviewers for their helpful suggestions.

References

  1. Anderson, R.L.: Low thrust trajectory design for resonant flybys and captures using invariant manifolds. PhD thesis, University of Colorado at Boulder (2005)Google Scholar
  2. Anderson, R.L.: Approaching Moons from resonance via invariant manifolds. In: 22nd AAS/AIAA Space Flight Mechanics Meeting, AAS 12–136. Charleston, South Carolina (2012)Google Scholar
  3. Anderson, R.L.: Tour design using resonant orbit heteroclinic connections in patched circular restricted three-body problems. In: 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13–493. Kauai, Hawaii (2013)Google Scholar
  4. Anderson, R.L.: Approaching Moons from resonance via invariant manifolds. J. Guid. Control Dyn. 38(6), 1097–1109 (2015)CrossRefADSGoogle Scholar
  5. Anderson, R.L., Lo, M.W.: The role of invariant manifolds in low thrust trajectory design (Part II). In: AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 2004–5305. Providence, Rhode Island (2004)Google Scholar
  6. Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control Dyn. 32(6), 1921–1930 (2009)CrossRefADSGoogle Scholar
  7. Anderson, R.L., Lo, M.W.: Dynamical systems analysis of planetary flybys and approach: planar Europa orbiter. J. Guid. Control Dyn. 33(6), 1899–1912 (2010)CrossRefADSGoogle Scholar
  8. Anderson, R.L., Lo, M.W.: A dynamical systems analysis of planetary flybys and approach: ballistic case. J. Astronaut. Sci. 58(2), 167–194 (2011a)CrossRefADSGoogle Scholar
  9. Anderson, R.L., Lo, M.W.: Flyby design using heteroclinic and homoclinic connections of unstable resonant orbits. In: Jah, M.K., Guo, Y., Bowes, A.L., Lai, P.C. (eds.) Spaceflight Mechanics: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting held February 13–17, 2011, New Orleans, Louisiana, pp. 321–340. American Astronautical Society, Univelt Inc., San Diego, CA (2011b)Google Scholar
  10. Anderson, R.L., Lo, M.W.: Spatial approaches to moons from resonance relative to invariant manifolds. In: 63rd International Astronautical Congress, IAC-12.C1.7.4. International Astronautical Federation, Naples, Italy (2012)Google Scholar
  11. Anderson, R.L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. In: AAS/AAIA Astrodynamics Specialist Conference, AAS 13–787. Hilton Head Island, South Carolina (2013)Google Scholar
  12. Barrabés, E., Gómez, G.: Spatial p-q resonant orbits of the RTBP. Celest. Mech. Dyn. Astron. 84, 387–407 (2002)CrossRefADSzbMATHGoogle Scholar
  13. Barrabés, E., Gómez, G.: Three-dimensional p-q resonant orbits close to second species solution. Celest. Mech. Dyn. Astron. 85, 145–174 (2003)CrossRefADSzbMATHGoogle Scholar
  14. Barrabés, E., Gómez, G.: A note on second species solutions generated from p-q resonant orbits. Celest. Mech. Dyn. Astron. 88, 229–244 (2004)CrossRefADSzbMATHGoogle Scholar
  15. Bollt, E., Meiss, J.D.: Targeting chaotic orbits to the Moon through recurrence. Phys. Lett. A 204, 373–378 (1995)CrossRefADSGoogle Scholar
  16. Bolotin, S., MacKay, R.S.: Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 94, 433–449 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. Bolotin, S.V., MacKay, R.S.: Periodic and chaotic trajectories of the second species for the n-centre problem. Celest. Mech. Dyn. Astron. 77, 49–75 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. Boutonnet, A., Schoenmaekers, J.: Mission analysis for the JUICE mission. In: McAdams, J.V., McKinley, D.P., Berry, M.M., Jenkins, K.L. (eds.) Space Flight Mechanics: Proceedings of the AAS/AIAA 22nd Space Flight Mechanics Meeting held January 29-February 2, 2012 in Charleston, South Carolina, pp 1561–1578. American Astronautical Society, Univelt Inc., San Diego, CA (2012)Google Scholar
  19. Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth--Moon masses. Technical Report 32–1168, Jet Propulsion Laboratory (1968)Google Scholar
  20. Broucke, R.A.: Periodic orbits in the elliptic restricted three-body problem. Tech. Rep. 32–1360, Jet Propulsion Laboratory (1969)Google Scholar
  21. Bruno, A.D.: On periodic flybys of the Moon. Celest. Mech. 24, 255–268 (1981)CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. Bruno, A.D.: The Restricted 3-Body Problem. Walter de Gruyter & Co., Berlin (1994)Google Scholar
  23. Bruno, A.D., Varin, V.P.: On families of periodic solutions of the restricted three-body problem. Celest. Mech. Dyn. Astron. 95(1–4), 27–54 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. Bruno, A.D., Varin, V.P.: Periodic solutions of the restricted three-body problem for a small mass ratio. J. Appl. Math. Mech. 71, 933–960 (2007)CrossRefMathSciNetGoogle Scholar
  25. Bruno, A.D., Varin, V.P.: Closed families of periodic solutions of a restricted three-body problem. Astron. Vestn. 43(3), 265–288 (2009a)Google Scholar
  26. Bruno, A.D., Varin, V.P.: Family \(h\) of periodic solutions of the restricted problem for small \(\mu \). Astron. Vestn. 43(1), 4–27 (2009b)Google Scholar
  27. Campagnola, S., Russell, R.: Endgame problem part 1: V-infinity-leveraging technique and the leveraging graph. J. Guid. Control Dyn. 33(2), 463–475 (2010a)CrossRefADSMathSciNetGoogle Scholar
  28. Campagnola, S., Russell, R.: Endgame problem part 2: multibody technique and the Tisserand-Poincaré graph. J. Guid. Control Dyn. 33(2), 476–486 (2010b)CrossRefADSMathSciNetGoogle Scholar
  29. Campagnola, S., Skerritt, P., Russell, R.P.: Flybys in the planar, circular, restricted, three-body problem. Celest. Mech. Dyn. Astron. 113(3), 343–368 (2012). doi: 10.1007/s10569-012-9427-x CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D.J., Petropoulos, A.E., Russell, R.P.: Tisserand leveraging transfers. J. Guid. Control Dyn. 34(4), 1202–1210 (2014a)Google Scholar
  31. Campagnola, S., Buffington, B.B., Petropoulos, A.E.: Jovian tour design for orbiter and lander missions to Europa. Acta Astronaut. 100, 68–81 (2014b)Google Scholar
  32. Dena, Á., Rodríguez, M., Serrano, S., Barrio, R.: High-precision continuation of periodic orbits. Abstr. Appl. Anal. 2012, 716,024-1–716,024-12 (2012)Google Scholar
  33. Dichmann, D.J., Doedel, E.J., Paffenroth, R.C.: The computation of periodic solutions of the 3-body problem using the numerical continuation software AUTO. In: International Conference on Libration Point Orbits and Applications. Aiguablava, Spain (2002)Google Scholar
  34. Doedel, E.J., Oldeman, B.E.: AUTO-07p: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada, Tech. rep (2009)Google Scholar
  35. Font, J., Nunes, A., Simó, C.: Consecutive quasi-collisions in the planar circular RTBP. Nonlinearity 15, 115–142 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. Font, J., Nunes, A., Simó, C.: A numerical study of the orbits of second species of the planar circular RTBP. Celest. Mech. Dyn. Astron. 103, 143–162 (2009)CrossRefADSzbMATHGoogle Scholar
  37. Hénon, M.: Generating Families in the Restricted Three-Body Problem. Lecture Notes in Physics, vol. 52. Springer, New York (1997)Google Scholar
  38. Hénon, M.: Generating Families in the Restricted Three-Body Problem II. Quantitative Study of Bifurcations, Lecture Notes in Physics, vol. 65. Springer, New York (2001)Google Scholar
  39. Howell, K.C., Breakwell, J.V.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984)CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. Howell, K.C., Marchand, B., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)MathSciNetGoogle Scholar
  41. Johannesen, J.R., D’Amario, L.A.: Europa orbiter mission trajectory design. In: Howell, K.C., Hoots, F.R., Kaufman, B., Alfriend, K.T. (eds.) Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Conference, August 16–19, 1999, Girdwood, Alaska, pp. 895–908. American Astronautical Society, Univelt Inc., San Diego, CA (1999)Google Scholar
  42. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P.H. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press Inc, New York (1977)Google Scholar
  43. Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems. Springer, New York (1986)Google Scholar
  44. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81(1–2), 27–38 (2001)CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. In: 60th International Astronautical Congress, IAC-09.C1.1.1. Deajeon, Korea (2010)Google Scholar
  46. Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68(7–8), 1361–1378 (2011)CrossRefADSGoogle Scholar
  47. Lo, M.W., Parker, J.S.: Unstable resonant orbits near Earth and their applications in planetary missions. In: AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 2004–5304. Providence, Rhode Island (2004)Google Scholar
  48. Miele, A.: Theorem of image trajectories in the Earth–Moon space. Astronaut. Acta 6(51), 225–232 (1960)Google Scholar
  49. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  50. Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, Volume 12 of JPL Deep Space Communications and Navigation Series, 1st edn. Wiley, Hoboken, NJ (2014)Google Scholar
  51. Parker, T., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  52. Perko, L.M.: Second species periodic solutions with an O(\(\mu \)) near-Moon passage. Celest. Mech. 14(4), 395–427 (1976)CrossRefADSMathSciNetzbMATHGoogle Scholar
  53. Perko, L.M.: Second species solution with an \(\text{ O }(\mu ^{\nu }), 1/3 < \nu <1\), near-Moon passage. Celestial Mechanics 16(3), 275–290 (1977)Google Scholar
  54. Perko, L.M.: Second species solutions with an \(\text{ O }(\mu ^{\nu }), 0 < \nu < 1\), near-Moon passage. Celest. Mech. 24(2), 155–171 (1981)Google Scholar
  55. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars et fils, Paris (1892)Google Scholar
  56. Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6(3), 576–596 (2007). doi: 10.1137/060663374 CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. Roy, A.E., Ovenden, M.W.: On the occurrence of commensurable mean motions in the solar system: the mirror theorem. Mon. Not. R. Astron. Soc. 115(3), 296–309 (1955)CrossRefADSzbMATHGoogle Scholar
  58. Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 2005–290. Lake Tahoe, CA (2005)Google Scholar
  59. Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7(4), 512–519 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  60. Sims, J.A., Longuski, J.M.: Analysis of \(\text{ V }_{\infty }\) leveraging for interplanetary missions. In: AIAA/AAS Astrodynamics Conference, AIAA-1994-3769. Scottsdale, Arizona (1994)Google Scholar
  61. Strömgren, E.: Connaisance actuelle des orbites dans le problème des trois corps. Bull. Astron. 9, 87–130 (1933)ADSGoogle Scholar
  62. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  63. Uphoff, C., Roberts, P.H., Friedman, L.D.: Orbit design concepts for Jupiter orbiter missions. J. Spacecr. Rockets 13(6), 348–355 (1976). doi: 10.2514/3.57096 CrossRefADSGoogle Scholar
  64. Vaquero, M., Howell, K.: Leveraging resonant orbit manifolds to design transfers between libration point orbits in multi-body regimes. In: 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13–334. Kauai, Hawaii (2013)Google Scholar
  65. Vaquero, M., Howell, K.C.: Poincaré maps and resonant orbits in the circular restricted three-body problem. In: Schaub, H., Gunter, B.C., Russell, R.P., Cerven, W.T. (eds.) Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held July 31 to August 4, 2011, in Girdwood, Alaska, pp. 433–451. American Astronautical Society, Univelt Inc., San Diego, California (2011)Google Scholar
  66. Vaquero, M., Howell, K.C.: Design of transfer trajectories between resonant orbits in the restricted three-body problem with application to the Earth--Moon system. In: 1st IAA/AAS Conference on the Dynamics and Control of Space Systems. Porto, Portugal (2012)Google Scholar
  67. Vaquero Escribano, T.M.: Poincaré sections and resonant orbits in the restricted three-body problem. Master’s thesis, Purdue University, West Lafayette, Indiana (2010)Google Scholar
  68. Whiffen, G.J.: Mystic: Implementation of the static dynamic optimal control algorithm for high fidelity low thrust trajectory design. In: AIAA/AAS Astrodynamics Specialists Conference, AIAA-2006-6741. Keystone, Colorado (2006)Google Scholar
  69. Whiffen, G.J., Lam, T.: The Jupiter icy moons orbiter reference trajectory. In: Vadali, S.R., Cangahuala, L.A., Schumacher Jr., P.W., Guzman, J.J. (eds) Spaceflight Mechanics: Proceedings of the 16th AAS/AIAA Space Flight Mechanics Meetings held January 22–26, 2006, Tampa, Florida, pp. 1415–1436. American Astronautical Society, Univelt Inc., San Diego, CA (2006)Google Scholar
  70. Woolley, R.C., Scheeres, D.J.: Hyperbolic periodic orbits in the three-body problem and their application to orbital capture. In: AAS George H. Born Symposium. Boulder, Colorado (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rodney L. Anderson
    • 1
  • Stefano Campagnola
    • 2
  • Gregory Lantoine
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Space Flight Systems, Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations