Celestial Mechanics and Dynamical Astronomy

, Volume 123, Issue 4, pp 453–479 | Cite as

The resonance overlap and Hill stability criteria revisited

Original Article

Abstract

We review the orbital stability of the planar circular restricted three-body problem in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances, which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass \(m_1\) and initial eccentricity e, there are actually two critical values of the semimajor axis. All values \(a < a_\mathrm{Hill}\) are Hill-stable, while all values \(a > a_\mathrm{unstable}\) are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first- and second-order mean-motion resonances.

Keywords

Eccentric orbits Mean-motion resonances Resonance overlap criterion Stability Three-body problem 

References

  1. Beaugé, C.: Asymmetric librations in exterior resonances. Celest. Mech. Dyn. Astron. 60, 225–248 (1994)MATHCrossRefADSGoogle Scholar
  2. Bodman, E.H.L., Quillen, A.C.: Stability boundaries for resonant migrating planet pairs. Mon. Not. R. Astron. Soc. Icarus Nature 440, 1753–1762 (2014)CrossRefADSGoogle Scholar
  3. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)Google Scholar
  4. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)MathSciNetCrossRefADSGoogle Scholar
  5. Deck, K.M., Payne, M., Holman, M.J.: First-order resonance overlap and the stability of close two-planet systems. Astrophys. J. 774, 129–141 (2013)CrossRefADSGoogle Scholar
  6. Duncan, M., Quinn, T., Tremaine, S.: The long-term evolution of orbits in the solar system. A mapping approach. Icarus 82, 402–418 (1989)CrossRefADSGoogle Scholar
  7. Dvorak, R., Pilat-Lohinger, E., Schwarz, R., Freistetter, F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, L37–L40 (2004)CrossRefADSGoogle Scholar
  8. Ferraz-Mello, S.: Expansion of the disturbing force-function for the study of high-eccentricity librations. Astron. Astrophys. 183, 208 (1987)Google Scholar
  9. Ferraz-Mello, S.: The high-eccentricity libration of the Hildas. Astron. J 96, 400–408 (1988)CrossRefADSGoogle Scholar
  10. Ferraz-Mello, S.: Canonical Perturbation Theories: Degenerate Systems and Resonance. Springer, New York (2007)CrossRefGoogle Scholar
  11. Gladman, B.: Dynamics of systems of two close planets. Icarus 106, 247–263 (1993)CrossRefADSGoogle Scholar
  12. Henrard, J., Lemaître, A.: A second fundamental model for resonance. Celest. Mech. Dyn. Astron. 30, 197–218 (1983)MATHCrossRefGoogle Scholar
  13. Hori, G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–295 (1966)ADSGoogle Scholar
  14. Malhotra, R.: Orbital resonances and chaos in the solar system. In ASP Conf. Ser. 149, Solar System Formation and Evolution, ed. D. Lazzaro, R. Vieira Martins, S. Ferraz-Mello, J. Fernandez, ans C. Beaugé (San Francisco, CA: ASP), 37 (1998)Google Scholar
  15. Moons, M., Morbidelli, A.: The main mean motion commensurabilities in the planar circular and elliptic problem. Celest. Mech. Dyn. Astron 57, 99–108 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  16. Morbidelli, A.: Modern Celestial Mechanics. Cambridge University Press, UK (1999)Google Scholar
  17. Murray, C.D., Dermott, S.F.: Solar Systems Dynamics. Cambridge University Press, Cambridge (1999)Google Scholar
  18. Mustill, A.J., Wyatt, M.C.: Dependence of a planets’ chaotic zone on particle eccentricity: the shape of debris disc inner edges. Mon. Not. R. Astron. Soc. Icarus Nature 419, 3074–3070 (2012)CrossRefADSGoogle Scholar
  19. Quillem, A.C., Faber, P.: Chaotic zone boundary for low free eccentricity particles near an eccentric planet. Mon. Not. R. Astron. Soc. Icarus Nature 373, 1245–1250 (2006)CrossRefADSGoogle Scholar
  20. Seidov, Z.F.: The Roche problem: some analytics. Astrophys. J. 603, 283–284 (2004)CrossRefADSGoogle Scholar
  21. Walker, G.H., Ford, J.: Amplitude instability and ergodic behavior for conservative nonlinear oscillator systems. Phys. Rev. 188, 416 (1969)MathSciNetCrossRefADSGoogle Scholar
  22. Wisdom, J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J 85, 1122–1133 (1980)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Instituto de Astronomía Teórica y Experimental (IATE), Observatorio AstronómicoUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Complejo Astronómico El Leoncito (CASLEO-CONICET)San JuanArgentina

Personalised recommendations