Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 123, Issue 3, pp 325–349 | Cite as

Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters

  • A. Fienga
  • J. Laskar
  • P. Exertier
  • H. Manche
  • M. Gastineau
Original Article

Abstract

In this paper, are given numerical estimations of the sensitivity of the latest version of the INPOP planetary ephemerides (INPOP13c) to GR parameters: the PPN parameters \(\beta \), \(\gamma \), and the oblateness of the Sun J\(_{2}^{\odot }\). Time variations of the gravitational mass of the Sun \(\mu \) are also considered. A first estimation is obtained by fitting these parameters with the classic method of least squares to planetary observations together with other parameters used for planetary ephemeris construction. A second approach is investigated using a new method of construction of alternative ephemerides. They are based on the same dynamical modeling and observational samples but in a non-GR framework with non-zero or non-unity GR parameters. Some alternative ephemerides are found to be close to INPOP13c and acceptable intervals of GR parameters are then defined at the light of the present INPOP13c accuracy. These intervals are compared with the one obtained with the direct least square estimation and with those extracted from the literature. No violation of GR is at this point noticeable.

Keywords

Ephemerides Gravitation PPN parameters Sun’s oblateness 

Notes

Acknowledgments

This work benefited from HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. The authors thank also Professor Damour for his fruitfull discussions.

References

  1. Armstrong, J., Kuhn, J.R.: Interpreting the solar limb shape distortions. Astrophys. J. 525, 533–538 (1999)CrossRefADSGoogle Scholar
  2. Ashby, N., Bender, P.L., Wahr, J.M.: Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D 75(2), 022001 (2007)CrossRefADSGoogle Scholar
  3. Bambi, C., Giannotti, M., Villante, F.L.: Response of primordial abundances to a general modification of \(g_{\rm n}\) and/or of the early universe expansion rate. Phys. Rev. D 71, 123524 (2005)CrossRefADSGoogle Scholar
  4. Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)CrossRefADSGoogle Scholar
  5. Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)CrossRefADSGoogle Scholar
  6. Blanchet, L., Novak, J.: External field effect of modified Newtonian dynamics in the solar system. Mon. Not. R. Astron. Soc. 412, 2530–2542 (2011)CrossRefADSGoogle Scholar
  7. Charbonneau, P.: Genetic algorithms in astronomy and astrophysics. Astrophys. J. 101, 309 (1995)CrossRefADSGoogle Scholar
  8. Damour, T., Nordtvedt, K.: Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 48, 3436–3450 (1993)MathSciNetCrossRefADSGoogle Scholar
  9. Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relat. Gravit. 26, 1171–1176 (1994)MathSciNetCrossRefADSGoogle Scholar
  10. Damour, T., Gibbons, G.W., Gundlach, C.: Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett. 64, 123–126 (1990)CrossRefADSGoogle Scholar
  11. Einstein, A.: Source text 1913: on the present state of the problem of gravitation. In: Renn, J., Janssen, M., Norton, J.D., Sauer, T., Stachel, J., Divarci, L., Schemmel, M., Smeenk, C., Martin, C. (eds.) The Genesis of General Relativity, p. 543 (1913)Google Scholar
  12. Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., et al.: INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys. 507, 1675–1686 (2009)CrossRefADSGoogle Scholar
  13. Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, pp. 159–169 (2010)Google Scholar
  14. Fienga, A., Laskar, J., Manche, H., Kuchynka, P., Desvignes, G., Gastineau, M., et al.: The planetary ephemerides INPOP10a and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363 (2011)CrossRefADSGoogle Scholar
  15. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep. 196, C1 (2014)Google Scholar
  16. Francis, M.P.: A general relativity effect in radius for minor planet (1566) Icarus. Astron. J 70, 675 (1965)CrossRefADSGoogle Scholar
  17. Füzfa, A., Alimi, J.M.: Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis. Phys. Rev. D 75(12), 123007 (2007)CrossRefADSGoogle Scholar
  18. Goździewski, K., Nasiroglu, I., Słowikowska, A., Beuermann, K., Kanbach, G., Gauza, B., et al.: On the HU Aquarii planetary system hypothesis. Mon. Not. R. Astron. Soc. 425, 930–949 (2012)CrossRefADSGoogle Scholar
  19. Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871–876 (1998)CrossRefADSGoogle Scholar
  20. Hees, A., Lamine, B., Reynaud, S., Jaekel, M.T., Le Poncin-Lafitte, C., Lainey, V., et al.: Radioscience simulations in general relativity and in alternative theories of gravity. Class. Quantum Gravity 29(23), 235027 (2012)CrossRefADSGoogle Scholar
  21. Hees, A., Folkner, W.M., Jacobson, R.A., Park, R.S.: Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)CrossRefADSGoogle Scholar
  22. Henke, S., Gail, H.P., Trieloff, M., Schwarz, W.H.: Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion. Icarus 226, 212–228 (2013)CrossRefADSGoogle Scholar
  23. Hofmann, F., Müller, J., Biskupek, L.: Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. Astron. Astrophys. 522, L5 (2010)CrossRefADSGoogle Scholar
  24. Horner, J., Wittenmyer, R.A., Hinse, T.C., Tinney, C.G.: A detailed investigation of the proposed NN Serpentis planetary system. Mon. Not. R. Astron. Soc. 425, 749–756 (2012)CrossRefADSGoogle Scholar
  25. Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense–Thirring effect in the solar system. Ap&SS 331, 351–395 (2011)zbMATHCrossRefADSGoogle Scholar
  26. Jaekel, M.T., Reynaud, S.: Mass, inertia, and gravitation, 491–530. doi: 10.1007/978-90-481-3015-3_18 (2011)
  27. Karnath, N., Prato, L., Wasserman, L.H., Torres, G., Skiff, B.A., Mathieu, R.D.: Orbital parameters for the two young binaries VSB 111 and VSB 126. Astron. J. 146, 149 (2013)CrossRefADSGoogle Scholar
  28. Kaspi, V.M., Taylor, J.H., Ryba, M.F.: High-precision timing of millisecond pulsars. iii. long-term monitoring of psrs b1855+09 and b1937+21. Astrophys. J. 428, 713 (1994)CrossRefADSGoogle Scholar
  29. Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., et al.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)CrossRefADSGoogle Scholar
  30. Kuchynka, P., Folkner, W., Konopliv, A.: Station-specific errors in mars ranging measurements. Technical report IPN Progress Report (2012)Google Scholar
  31. Lambert, S.B., Le Poncin-Lafitte, C.: Determining the relativistic parameter \(\gamma \) using very long baseline interferometry. Astron. Astrophys. 499, 331–335 (2009)zbMATHCrossRefADSGoogle Scholar
  32. Le Verrier, U.J.: Theorie du mouvement de Mercure. Ann. Obs. Paris 5, 1 (1859)Google Scholar
  33. Li, Y.C., Wu, F.Q., Chen, X.: Constraints on the Brans–Dicke gravity theory with the Planck data. Phys. Rev. D 88(8), 084053 (2013)CrossRefADSGoogle Scholar
  34. Luzum, B., Capitaine, N., Fienga, A., Folkner, W., Fukushima, T., Hilton, J., et al.: The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Celest. Mech. Dyn. Astron. 110, 293–304 (2011)zbMATHCrossRefADSGoogle Scholar
  35. Magnin, V.: Contribution to the study and optimisation of optoelectronics components. PhD in electronics, University Lille, vol. 1, (1998)Google Scholar
  36. Marty, J.C.: Mars odyssey data release. Priv. Commun. (2013)Google Scholar
  37. Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., Berthomieu, G.: New values of gravitational moments J2 and J4 deduced from helioseismology. Sol. Phys. 222, 191–197 (2004)CrossRefADSGoogle Scholar
  38. Migaszewski, C., Słonina, M., Goździewski, K.: A dynamical analysis of the Kepler-11 planetary system. Mon. Not. R. Astron. Soc. 427, 770–789 (2012)CrossRefADSGoogle Scholar
  39. Morley, T.: Mex and vex data release. Priv. Commun. (2012)Google Scholar
  40. Morley, T.: Mex and vex data release. Priv. Commun. (2013)Google Scholar
  41. Moyer, T.: DPODP manual. IOM 3215-37, JPL (1971)Google Scholar
  42. Moyer, T.: Formulation for observed and computed values of deep space network data types for navigation. In: Monography of Deep Space Communications and Navigation Series 2, JPL (2000)Google Scholar
  43. Müller, J., Soffel, M., Klioner, S.A.: Geodesy and relativity. J. Geod. 82, 133–145 (2008)zbMATHCrossRefADSGoogle Scholar
  44. Nowak, G., Niedzielski, A., Wolszczan, A., Adamów, M., Maciejewski, G.: BD+15 2940 and HD 233604: two giants with planets close to the engulfment zone. Astrophys. J. 770, 53 (2013)CrossRefADSGoogle Scholar
  45. Paterno, L., Sofia, S., di Mauro, M.P.: The rotation of the Sun’s core. Astron. Astrophys. 314, 940–946 (1996)ADSGoogle Scholar
  46. Pijpers, F.P.: Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, L76–L80 (1998)CrossRefADSGoogle Scholar
  47. Pinto, R.F., Brun, A.S., Jouve, L., Grappin, R.: Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. Astrophys. J. 737, 72 (2011)CrossRefADSGoogle Scholar
  48. Pitjeva, E.V.: EPM ephemerides and relativity. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, pp. 170–178 (2010)Google Scholar
  49. Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Sol. Syst. Res. 47, 386–402 (2013)CrossRefADSGoogle Scholar
  50. Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012)CrossRefADSGoogle Scholar
  51. Pitjeva, E.V., Pitjev, N.P.: Relativistic effects and dark matter in the solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 432, 3431–3437 (2013)CrossRefADSGoogle Scholar
  52. Roxburgh, I.W.: Gravitational multipole moments of the Sun determined from helioseismic estimates of the internal structure and rotation. Astron. Astrophys. 377, 688–690 (2001)CrossRefADSGoogle Scholar
  53. Siqueira Mello, C., Hill, V., Barbuy, B., Spite, M., Spite, F., Beers, T.C., et al.: High-resolution abundance analysis of very metal-poor r-I stars. Astron. Astrophys. 565, A93 (2014)CrossRefADSGoogle Scholar
  54. Steinhardt, P.J., Wesley, D.: Dark energy, inflation, and extra dimensions. Phys. Rev. D 79(10), 104026 (2009)CrossRefADSGoogle Scholar
  55. Uzan, J.P.: Tests of gravity on astrophysical scales and variation of the constants. Ann. Henri Poincaré 4, 347–369 (2003)CrossRefADSGoogle Scholar
  56. Verma, A.K.: Improvement of the planetary ephemerides using spacecraft navigation data and its application to fundamental physics. Université de Besancon, France, PhD in astronomy (2013)Google Scholar
  57. Verma, A.K., Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. Astron. Astrophys. 561, A115 (2014)CrossRefADSGoogle Scholar
  58. Williams, J.G., Folkner, W.M.: Lunar laser ranging: relativistic model and tests of gravitational physics. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, p. 801 (2010)Google Scholar
  59. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93(26), 261101 (2004)CrossRefADSGoogle Scholar
  60. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18, 1129–1175 (2009)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. Fienga
    • 1
  • J. Laskar
    • 2
  • P. Exertier
    • 1
  • H. Manche
    • 2
  • M. Gastineau
    • 2
  1. 1.Geoazur, CNRS UMR7329Observatoire de la Côte d’AzurValbonneFrance
  2. 2.IMCCE, CNRS UMR8028ParisFrance

Personalised recommendations