Celestial Mechanics and Dynamical Astronomy

, Volume 123, Issue 3, pp 263–277 | Cite as

Mercury’s resonant rotation from secular orbital elements

Original Article

Abstract

We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of \((87.96934962 \pm 0.00000037)\,\hbox {days}\) and (assuming a perfect resonance) a spin rate of \((6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}\). The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation.

Keywords

Mercury Spin-orbit coupling Laplace plane MESSENGER Ephemeris Secular elements 

References

  1. Archinal, B.A., A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109(2), 101–135 (2011). doi:10.1007/s10569-010-9320-4 MATHCrossRefADSGoogle Scholar
  2. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics, pp. 62–64. Dover publications, New York (1970)Google Scholar
  3. Colombo, G.: Rotational period of the planet Mercury. Nature 208, 575 (1965). doi:10.1038/208575a0 CrossRefADSGoogle Scholar
  4. Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., et al.: Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites. Celest. Mech. 22(3), 205–230 (1980). doi:10.1007/BF01229508 MathSciNetCrossRefADSGoogle Scholar
  5. D’Hoedt, S., Noyelles, B., Dufey, J., Lemaitre, A.: Determination of an instantaneous Laplace plane for Mercury’s rotation. Adv. Space Res. 44(5), 597–603 (2009). doi:10.1016/j.asr.2009.05.008 CrossRefADSGoogle Scholar
  6. Einstein, A.: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte K. preuss. Akad. Wiss. 47, 831–839 (1915)Google Scholar
  7. Fienga, A., Manche, H., Laskar, J., Gastineau, M., Verma, A.: INPOP New Release: INPOP13b. arXiv preprint arXiv:1405.0484 (2014)
  8. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep. 196, 1–81 (2014)Google Scholar
  9. Goldreich, P., Peale, S.J.: Spin-orbit coupling in the Solar System. Astron. J. 71, 425 (1966). doi:10.1086/109947 CrossRefADSGoogle Scholar
  10. Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy, 160 pp. Dover, Mineola (2000)Google Scholar
  11. Laskar, J.: A numerical experiment on the chaotic behaviour of the Solar System. Nature 338(6212), 237–238 (1989). doi:10.1038/338237a0 CrossRefADSGoogle Scholar
  12. Margot, J.L.: A Mercury orientation model including non-zero obliquity and librations. Celest. Mech. Dyn. Astron. 105(4), 329–336 (2009). doi:10.1007/s10569-009-9234-1 MATHCrossRefADSGoogle Scholar
  13. Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Large longitude libration of Mercury reveals a molten core. Science 316(5825), 710–714 (2007). doi:10.1126/science.1140514 CrossRefADSGoogle Scholar
  14. Margot, J.L., Peale, S.J., Solomon, S.C., Hauck, S.A., Ghigo, F.D., Jurgens, R.F., et al.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. 117(E12), E00L09 (2012). doi:10.1029/2012JE004161 ADSGoogle Scholar
  15. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., et al.: The gravity field, orientation and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets (2014). doi:10.1002/2014JE004675
  16. Noyelles, B., D’Hoedt, S.: Modeling the obliquity of Mercury. Planet Space Sci. 60(1), 274–286 (2012). doi:10.1016/j.pss.2011.07.024 CrossRefADSGoogle Scholar
  17. Noyelles, B., Lhotka, C.: The influence of orbital dynamics, shape and tides on the obliquity of Mercury. Adv. Space Res. 52(12), 2085–2101 (2013). doi:10.1016/j.asr.2013.09.024 CrossRefADSGoogle Scholar
  18. Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483 (1969). doi:10.1086/110825 CrossRefADSGoogle Scholar
  19. Peale, S.J.: Orbital resonances in the Solar System. Annu. Rev. Astron. Astrophys. 14(1), 215–246 (1976). doi:10.1146/annurev.aa.14.090176.001243 CrossRefADSGoogle Scholar
  20. Peale, S.J.: Measurement accuracies required for the determination of a Mercurian liquid core. Icarus 48(1), 143–145 (1981). doi:10.1016/0019-1035(81)90160-3 CrossRefADSGoogle Scholar
  21. Peale, S.J.: The free precession and libration of Mercury. Icarus 178(1), 4–18 (2005). doi:10.1016/j.icarus.2005.03.017 CrossRefADSGoogle Scholar
  22. Peale, S.J.: The proximity of Mercury’s spin to Cassini state 1 from adiabatic invariance. Icarus 181(2), 338–347 (2006). doi:10.1016/j.icarus.2005.10.006 CrossRefADSGoogle Scholar
  23. Peale, S.J., Gold, T.: Rotation of the planet Mercury. Nature 206, 1240–1241 (1965). doi:10.1038/2061240b0 CrossRefADSGoogle Scholar
  24. Peale, S.J., Yseboodt, M., Margot, J.L.: Long-period forcing of Mercury’s libration in longitude. Icarus 187(2), 365–373 (2007). doi:10.1016/j.icarus.2006.10.028 CrossRefADSGoogle Scholar
  25. Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Effect of core-mantle and tidal torques on Mercury’s spin axis orientation. Icarus 231, 206–220 (2014). doi:10.1016/j.icarus.2013.12.007 CrossRefADSGoogle Scholar
  26. Pettengill, G.H., Dyce, R.B.: A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965). doi:10.1038/2061240a0 CrossRefADSGoogle Scholar
  27. Sanders, J.A., Verhulst, F., Murdock, J.: Some elementary exercises in celestial mechanics. In: Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, pp. 363–376. Springer, New York (2007). doi:10.1007/978-0-387-48918-6_17
  28. Standish, E.M., Williams, J.G.: Orbital ephemerides of the Sun, Moon, and planets. In: Urban, S.E., Seidelmann, P.K. (eds.) Explanatory Supplement to the Astronomical Almanac, 3rd edn, University Science Books, chap. 8, pp. 338–339 (2013)Google Scholar
  29. Stark, A., Oberst, J., Preusker, F., Gwinner, K., Peale, S.J., Margot, J.L., et al.: Mercury’s rotational parameters from MESSENGER image and laser altimetry data: a feasibility study. Planet. Space Sci. (2015). doi:10.1016/j.pss.2015.05.006
  30. Weinberg, S.: Gravitation and Cosmology: Principle and Applications of General Theory of Relativity, p. 199. Wiley, New York (1972)Google Scholar
  31. Yseboodt, M.: The Laplace plane of Mercury. In: EPSC-DPS Joint Meeting, vol. 1, p. 996 (2011)Google Scholar
  32. Yseboodt, M., Margot, J.L.: Evolution of Mercury’s obliquity. Icarus 181(2), 327–337 (2006). doi:10.1016/j.icarus.2005.11.024 CrossRefADSGoogle Scholar
  33. Yseboodt, M., Margot, J.L., Peale, S.J.: Analytical model of the long-period forced longitude librations of Mercury. Icarus 207(2), 536–544 (2010). doi:10.1016/j.icarus.2009.12.020 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexander Stark
    • 1
  • Jürgen Oberst
    • 1
    • 2
  • Hauke Hussmann
    • 1
  1. 1.DLR, Institute of Planetary ResearchBerlinGermany
  2. 2.Moscow State University for Geodesy and CartographyMoscowRussia

Personalised recommendations