Celestial Mechanics and Dynamical Astronomy

, Volume 121, Issue 4, pp 415–429 | Cite as

On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking

Original Article

Abstract

Two approaches have been formulated to compute the gravitational potential difference using low–low satellite-to-satellite tracking data based on energy integral: one in the geocentric inertial reference system, and the other in the terrestrial reference system. The focus of this work is on the approach in the geocentric inertial reference system, where a potential rotation term appears in addition to the potential term. In former formulations, the contribution of the time-variable components of the gravitational potential to the potential term was included, but their contribution to the potential rotation term was neglected. In this work, an improvement to the former formulations is made by reformulating the potential rotation term to include the contribution of the time-variable components of the gravitational potential. A simulation shows that our more accurate formulation of the potential rotation term is necessary to achieve the accuracy for recovering the temporal variation of the Earth’s gravity field, such as for use to the Gravity Recovery And Climate Experiment GRACE observation data based on this approach.

Keywords

Gravity Satellite-satellite tracking GRACE Energy integral method Potential difference Potential rotation term Jekeli formulation 

References

  1. Cheng, L.Y., Hsu, H.Z.: The rotation of the gravity potential on the earth’s gravity field recovery. Chin. J. Geophys. 49, 79–85 (2006). doi:10.1002/cjg2.814 CrossRefADSGoogle Scholar
  2. Ditmar, P., Liu, X.: Gravity field modeling on the basis of GRACE range–rate combinations. VI Hotine-Marussi Symp. Theor. Comput. Geod. Int. Assoc. Geod. Symp. 132, 17–22 (2008)CrossRefGoogle Scholar
  3. Han, S.C., Shum, C.K., Bevis, M., Ji, C.: Crustal dilatation observed by GRACE after the 2004 Sumatra–Andaman earthquake. Science 313, 658–662 (2006a). doi:10.1126/science.1128661 CrossRefADSGoogle Scholar
  4. Han, S.C., Shum, C.K., Jekeli, C.: Precise estimation of in situ geopotential differences from GRACE low–low satellite-to-satellite tracking and accelerometer data. J. Geophys. Res. 111, B04411 (2006b). doi:10.1029/2005JB003719 ADSGoogle Scholar
  5. Han, S.C., Rowlands, D.D., Luthcke, S.B., Lemoine, F.G.: Localized analysis of satellite tracking data for studying time-variable Earths gravity fields. J. Geophys. Res. 113, B06401 (2008). doi:10.1029/2007JB005218 ADSGoogle Scholar
  6. Hartmann, T., Wenzel, H.G.: The HW95 tidal potential catalogue. Geophys. Res. Lett. 22, 3553–3556 (1995). doi:10.1029/95GL03324 CrossRefADSGoogle Scholar
  7. Ilk, K.H., Eicker, A., Mayer-Grr, T.: Global gravity field recovery by merging regional focusing patches: an integrated approach. Int. Assoc. Geod. Symp., 2007, vol. 130, Part III, pp. 329–336, (2007), doi:10.1007/978-3-540-49350-1_49
  8. Jekeli, C.: The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 75, 85–101 (1999)CrossRefADSMATHGoogle Scholar
  9. Klosko, S., Rowlands, D., Luthcke, S., Lemoine, F., Chinn, D., Rodell, M.: Evaluation and validation of mascon recovery using GRACE KBRR data with independent mass flux estimates in the Mississippi Basin. J. Geod. 83, 817–827 (2009). doi:10.1007/s00190-009-0301-x CrossRefADSGoogle Scholar
  10. Mayer-Gürr, T., Eicker, A., Kurtenbach, E., Ilk, K.H.: ITG-GRACE: global static and temporal gravity field models from GRACE data. Adv. Technol. Earth Sci. System Earth Geod.–Geophys. Space Tech. Part 2 2, 159–168 (2010)CrossRefGoogle Scholar
  11. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly 2008, April 13–18, 2008, Vienna, Austria (2008)Google Scholar
  12. Petit, G., Luzum, B. (eds.): IERS Conventions (2010): IERS Technical Note No. 36, International Earth Rotation and Reference Systems Service (2010)Google Scholar
  13. Ramillien, G., Biancale, R., Gratton, S.: GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology. J. Geod. 85, 313–328 (2011). doi:10.1007/s00190-010-0438-7 CrossRefADSGoogle Scholar
  14. Rowlands, D.D., Luthcke, S.B., McCarthy, J.J., Klosko, S.M., Chinn, D.S., Lemoine, F.G.: Global mass flux solutions from GRACE: a comparison of parameter estimation strategies—mass concentrations versus Stokes coefficients. J. Geophys. Res. 115, B01403 (2010). doi:10.1029/2009JB006546 CrossRefADSGoogle Scholar
  15. Shang, K., Guo, J.Y., Luo, J., Shum, C.K., Dai, C.L.: Temporal gravity estimation from GRACE observation based on dynamic energy balance approach, 2013 International Symposium Asia–Pacific Space Geodynamics, Columbus, Ohio, 14–17 October, 2013 (2013)Google Scholar
  16. Shang, K., Guo, J.Y., Dai, C.L., Duan, J.B., Shum, C.K., Schmidt, M.G. et al.: GRACE estimated terrestrial and aquifer storage change using an improved energy balance and regional gravity modeling approach, AGU Fall Meeting, San Francisco, 15–19 December, 2014 (2014)Google Scholar
  17. Visser, P.N.A.M., Sneeuw, N., Gerlach, C.: Energy integral method for gravity field determination from satellite orbit coordinates. J. Geod. 77, 207–216 (2003). doi:10.1007/s00190-003-0315-8 CrossRefADSMATHGoogle Scholar
  18. Wang, X., Gerlach, C., Rummel, R.: Time-variable gravity field from satellite constellations using the energy integral. Geophys. J. Int. 190, 1507–1525 (2012). doi:10.1111/j.1365-246X.2012.05578.x CrossRefADSGoogle Scholar
  19. Watkins, M.M., Yuan, D., Kuang, D., Bertiger, W., Kim, M., Kruizinga, G.: GRACE Harmonic and Mascon Solutions at JPL. EOS Trans. AGU, 86(52), Fall Meet. Suppl., Abstract G22A–04 (2005)Google Scholar
  20. Watkins, M.M., Yuan, D., Kruizinga, G.: Alternative gravity field representations: solutions, characteristics, and issues. GRACE Science Team Meeting, October 15–17, 2007, Potsdam, Germany (2007)Google Scholar
  21. Wessel, P., Smith, W.H.F.: Free software helps map and display data. EOS Trans. AGU 72(p441), 445–446 (1991)ADSGoogle Scholar
  22. Xu, P.: Position and velocity perturbations for the determination of geopotential from space geodetic measurements. Celest. Mech. Dyn. Astr. 100, 231–249 (2008). doi:10.1007/s10569-008-9117-x CrossRefADSMATHGoogle Scholar
  23. Zheng, W., Hsu, H.Z., Zhong, M., Yun, M.J.: Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. J. Geodyn. 53, 1–7 (2012). doi:10.1016/j.jog.2011.07.003 CrossRefGoogle Scholar
  24. Zheng, W., Shao, C.G., Luo, J., Hsu, H.Z.: Numerical simulation of Earth’s gravitational field recovery from SST based on the energy conservation principle. Chin. J. Geophys. 49, 644–650 (2006). doi:10.1002/cjg2.878 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Y. Guo
    • 1
  • K. Shang
    • 1
    • 2
  • C. Jekeli
    • 1
  • C. K. Shum
    • 1
    • 3
  1. 1.Division of Geodetic Science, School of Earth SciencesOhio State UniversityColumbusUSA
  2. 2.State Key Laboratary of Geodesy and Earth’s DynamaicsInstitute of Geodesy and Geophysics, Chinese Academy of SciencesWuhanChina
  3. 3.Institute of Geodesy and Geophysics, Chinese Academy of SciencesWuhanChina

Personalised recommendations