Celestial Mechanics and Dynamical Astronomy

, Volume 121, Issue 2, pp 191–210 | Cite as

Transport orbits in an equilateral restricted four-body problem

Original Article

Abstract

In this paper we consider a restricted equilateral four-body problem where a particle of negligible mass is moving under the Newtonian gravitational attraction of three masses (called primaries) which move on circular orbits around their center of masses such that their configuration is always an equilateral triangle (Lagrangian configuration). We consider the case of two bodies of equal masses, which in adimensional units is the parameter of the problem. We study numerically the existence of families of unstable periodic orbits, whose invariant stable and unstable manifolds are responsible for the existence of homoclinic and heteroclinic connections, as well as of transit orbits traveling from and to different regions. We explore, for three different values of the mass parameter, what kind of transits and energy levels exist for which there are orbits with prescribed itineraries visiting the neighborhood of different primaries.

Keywords

Lagrangian configuration Four-body problem Invariant manifolds  Transfer orbits Homoclinic and heteroclinic connections 

References

  1. Alvarez-Ramírez, M., Vidal, C.: Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng. (2009). doi:10.1155/2009/181360
  2. Alvarez-Ramírez, M., Delgado, J., Vidal, C.: Global regularization of a restricted four-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24(7), 1450092 (2014). (15 pages)CrossRefGoogle Scholar
  3. Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011)ADSCrossRefMATHGoogle Scholar
  4. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 2179–2193 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun–Jupiter–Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013)ADSCrossRefGoogle Scholar
  6. Barrabés, E., Mondelo, J.M., Ollé, M.: Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Nonlinearity 22(12), 2901–2918 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. Budzko, D.A., Prokopenya, A.N.: Stability of equilibrium positions in the spatial circular restricted four-body problem. Lect. Notes Comput. Sci. 7442, 72–83 (2012)CrossRefGoogle Scholar
  8. Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 336, 357–367 (2012)Google Scholar
  9. Burgos-García, J., Delgado, J.: On the “Blue sky catastrophe” termination in the restricted four-body problem. Celest. Mech. Dyn. Astron. 117, 113–136 (2013)ADSCrossRefMATHGoogle Scholar
  10. Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. Conley, C.C.: On the ultimate behavior of orbits with respect to an unstable critical point i. oscillating, asymptotic, and capture orbits. J. Differ. Equ. 5(1), 136–158 (1969)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. Devaney, R.L.: Blue sky catastrophes in reversible and Hamiltonian systems. Indiana Univ. Math. J. 26(2), 247–263 (1977)CrossRefMATHMathSciNetGoogle Scholar
  13. Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D 157(4), 283–321 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. Leandro, E.S.G.: On the central congurations of the planar restricted four-body problem. J. Differ. Equ. 226(1), 323–351 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. McGehee, R.P.: Some homoclinic orbits for the restricted three-body problem. PhD thesis, University of Wisconsin, (1969)Google Scholar
  16. Marzari, F., Scholl, H., Murray, C., Lagerkvist, C.: Origin and evolution of Trojan asteroids. Asteroids III 1, 725–738 (2002). (University of Arizona Press)ADSGoogle Scholar
  17. Mazari, F.: Puzzling Neptune Trojans. Science 313, 451–452 (2006)CrossRefGoogle Scholar
  18. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-body Problem, Volume 90 of Applied Mathematical Sciences. Springer, New York (1992)Google Scholar
  19. Roy, A.E.: Orbital Motion, 4th edn. Taylor & Francis, London (2004)Google Scholar
  20. Steves, B.A., Roy, A.E., Bell, M.: Some special restricted four-body problems I. Modelling the Caledonian problem. Planet. Space Sci. 46, 1465–1474 (1998)ADSCrossRefGoogle Scholar
  21. Steves, B.A., Roy, A.E., Bell, M.: Some special solutions of the four body problem II. From Caledonia to Copenaghen. Planet. Space Sci. 46, 1475–1486 (1998)ADSCrossRefGoogle Scholar
  22. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)Google Scholar
  23. Wintner, A.: The Analytical Foundations of Celestial Mechanics, vol. 5 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, USA (1941)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departamento de MatemáticasUAM–IztapalapaMexicoMexico
  2. 2.Departament d’Informàtica, Matemàtica Aplicada i Estadística Campus Montilivi, Universitat de GironaGironaSpain

Personalised recommendations