Celestial Mechanics and Dynamical Astronomy

, Volume 120, Issue 3, pp 309–336 | Cite as

Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem

  • G. MingottiEmail author
  • J. P. Sánchez
  • C. R. McInnes
Original Article


In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.


Near-Earth object capture Invariant manifolds Low-thrust propulsion Special dedicated sets Optimal control problem Libration point periodic orbit (LPO) Distant prograde periodic orbit (DPO) Easily retrievable objects (EROs) Asteroid retrieval candidates 



This research was performed in the framework of the project supported by the European Research Council Advanced Investigator Grant—227571: VISIONSPACE, Orbital Dynamics at Extremes of Spacecraft Length-Scale. J.P. Sánchez is supported by the European Commission under the Marie Curie Grant 330649 (AsteroidRetrieval). Part of the work described in this paper has been presented at the Sixth Meeting on Celestial Mechanics–CELMEC VI, San Martino al Cimino (VT), Italy, 1–7 September 2013.


  1. Abell, P., Barbee, B.W., Mink, R.G., Adamo, D.R., Alberding, C.M., Mazanek, D.D., et al.: The near-Earth object human space flight accessible targets study (NHATS) list of near-Earth asteroids: identifying potential targets for future exploration. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44 (2012)Google Scholar
  2. Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guida. Control Dyn. 32, 1921–1930 (2009)CrossRefADSGoogle Scholar
  3. Augustine, N.R., Austin, W.M., Bajmuk, B.I., Chiao, L., Chyba, C., Crawley, E.F., et al.: Seeking a Human Spaceflight Program Worthy of a Great Nation. Review of US Human Spaceflight Plans Committee, National Aeronautics and Space Administration (2009)Google Scholar
  4. Baoyin, H.X., Chen, Y., Li, J.F.: Capturing near Earth objects. Res. Astron. Astrophys. 10(6), 587 (2010)CrossRefADSGoogle Scholar
  5. Belbruno, E.: Lunar capture orbits, a method of constructing Earth-Moon trajectories and the lunar gas mission. In: Paper AIAA 87–1054, Proceedings of the 19th AIAA/DGLR/JSASS International Electric Propulsion Conference, Colorado Springs, CO (1987)Google Scholar
  6. Belbruno, E.: The dynamical mechanism of ballistic lunar capture transfers in the four-body problem from the perspective of invariant manifolds and Hill’s regions. In: Technical Report, Centre De Recerca Matematica, Barcelona, Spain (1994)Google Scholar
  7. Belbruno, E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. Princeton University Press, Princeton (2004)Google Scholar
  8. Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)CrossRefADSGoogle Scholar
  9. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)CrossRefzbMATHADSGoogle Scholar
  10. Bombardelli, C., Urrutxua, H., Galvez, A., Carnelli, I.: The siroco asteroid deflection demonstrator. In: Proceedings of the 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, NC (2012)Google Scholar
  11. Brasser, R., Wiegert, P.: Asteroids on Earth-like orbits and their origin. Mon. Not. R. Astron. Soc. 386(4), 2031–2038 (2008)CrossRefADSGoogle Scholar
  12. Brophy, J., Friedman, L., Culick, F., et al.: Asteroid Retrieval Feasibility Study. Keck Institute for Space Studies, Califonia Institute of Technology, Jet Propulsion Laboratory (2012)Google Scholar
  13. Brophy, J.R., Gershman, R., Landau, D., Yeomans, D., Polk, J., Porter, et al.: Asteroid return mission feasibility study. In: AIAA Paper 2011-5665, Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propuslion Conference and Exhibit (2011)Google Scholar
  14. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1975)Google Scholar
  15. Chesley, S.R., Chodas, P.W., Milani, A., Valsecchi, G.B., Yeomans, D.K.: Quantifying the risk posed by potential Earth impacts. Icarus 159(2), 423–432 (2002)CrossRefADSGoogle Scholar
  16. Conley, C.C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Dellnitz, M., Junge, O., Post, M., Thiere, B.: On target for Venus—set oriented computation of energy efficient low thrust trajectories. Celest. Mech. Dyn. Astron. 95, 357–370 (2006)MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. Dellnitz, M., Padberg, K., Post, M., Thiere, B.: Set oriented approximation of invariant manifolds: review of concepts for astrodynamical problems. Am. Inst. Phys. Conf. Proc. 886, 90–99 (2007)MathSciNetADSGoogle Scholar
  19. Demeyer, J., Gurfil, P.: Transfer to distant retrograde orbits using manifold theory. J. Guid. Control Dyn. 30(5), 1261–1267 (2007)CrossRefADSGoogle Scholar
  20. Dunham, D., Farquhar, R.: Libration point missions, 1978–2002. In: Proceedings of the International Conference on Libration Point Orbits and Applications, Girona, Spain (2002)Google Scholar
  21. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)CrossRefzbMATHADSGoogle Scholar
  22. Farquhar, R.W., Muhonen, D.P., Richardson, D.L.: Mission design for a halo orbiter of the Earth. J. Spacecr. Rocket. 14, 170–177 (1977)CrossRefADSGoogle Scholar
  23. García-Yárnoz, D., Sánchez, J.P., McInnes, C.R.: Easily retrievable objects among the NEO population. Celest. Mech. Dyn. Astron. 116(4), 367–388 (2013)CrossRefADSGoogle Scholar
  24. Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the rtbp. Phys. D 157, 283–321 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Gómez, G., Masdemont, J., Mondelo, J.M.: Libration point orbits: a survey from the dynamical point of view. In: Proceedings of the International Conference on Libration Point Orbits and Applications (2002)Google Scholar
  26. Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point l1. Celest. Mech. Dyn. Astron. 56, 239–259 (1993)CrossRefGoogle Scholar
  27. Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Invariant manifolds, the spatial three-body problem and space mission design. Adv. Astronaut. Sci. 109, 3–22 (2001)Google Scholar
  28. Gómez, G., Llibre, J., Martínez, R., Simó, C.: The Case of Collinear Libration Points, vol. I: fundamentals. Dynamics and Mission Design Near Libration Points. World Scientific, London (2001)Google Scholar
  29. Greenstreet, S., Ngo, H., Gladman, B.: The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus 217(1), 355–366 (2012)CrossRefADSGoogle Scholar
  30. Hargraves, C., Paris, S.: Direct trajectory optimization using nonlinear programming and collocations. J. Guid. Control Dyn. 10, 338–342 (1987)CrossRefzbMATHADSGoogle Scholar
  31. Hasnain, Z., Lamb, C.A., Ross, S.D.: Capturing near-Earth asteroids around Earth. Acta Astronaut. 81(2), 523–531 (2012)CrossRefADSGoogle Scholar
  32. Hénon, M.: Numerical exploration of the restricted problem. v. Astron. Astrophys. 1, 223–238 (1969)zbMATHADSGoogle Scholar
  33. Herman, A.L., Conway, B.A.: Optimal, low-thrust, Earth–Moon orbit transfer. J. Guid. Control Dyn. 21(1), 141–147 (1998)CrossRefzbMATHADSGoogle Scholar
  34. Howell, K., Ozimek, M.: Low-thrust transfers in the Earth-Moon system including applications to libration point orbits. In: Paper AAS 07-343, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI (2007)Google Scholar
  35. Howell, K.C., Barden, B.T., Lo, M.W.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45(2), 161–178 (1997)MathSciNetGoogle Scholar
  36. Jorba, À., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D 132, 189–213 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa its technology and science accomplishment aummary and hayabusa-2. Acta Astronaut. 62(10), 639–647 (2008)CrossRefADSGoogle Scholar
  38. Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth-Moon trajectories. J. Guid. Control Dyn. 18(4), 830–837 (1995)CrossRefADSGoogle Scholar
  39. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: The genesis trajectory and heteroclinic connections. In: Paper AAS 99-451, Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Girdwood, AK (1999)Google Scholar
  40. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)MathSciNetCrossRefzbMATHADSGoogle Scholar
  41. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)MathSciNetCrossRefzbMATHADSGoogle Scholar
  42. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)MathSciNetCrossRefGoogle Scholar
  43. Lauretta, D.S., OSIRIS-Rex Team: An overview of the osiris-rex asteroid sample return mission. In: In Lunar and Planetary Institute Science Conference Abstracts (2012)Google Scholar
  44. Llibre, J., Martínez, R., Simó, C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near \(l_2\) in the restricted three-body problem. J. Differ. Equ. 58, 104–156 (1985)CrossRefzbMATHADSGoogle Scholar
  45. Lo, M.W, Chung, M.J.: Lunar sample return via the interplanetary superhighway. In: Paper AIAA 2002-4718, Proceedings of the AIAA/AAS Astrodynamics Specialists Conference, Monterey, CA (2002)Google Scholar
  46. Lo, M.W., Parker, J.S.: Unstable resonant orbits near earth and their applications in planetary missions. In: Paper 2004-5304, Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, RI (2004)Google Scholar
  47. Lu, E.T., Love, S.G.: Gravitational tractor for towing asteroids. Nature 438(7065), 177–178 (2005)CrossRefADSGoogle Scholar
  48. Martin, C., Conway, B.A., Ibán̈ez, P.: Space Manifold Dynamics. Springer, Berlin (2010)Google Scholar
  49. Michel, P., Zappalà, V., Cellino, A., Tanga, P.: Estimated abundance of Atens and asteroids evolving on orbits between Earth and Sun. Icarus 143(2), 421–424 (2000)CrossRefADSGoogle Scholar
  50. Ming, X., Shijie, X.: Exploration of distant retrograde orbits around Moon. Acta Astronaut. 65(5–6), 853–860 (2009)CrossRefADSGoogle Scholar
  51. Mingotti, G.: Trajectory Design and Optimization in Highly Nonlinear Astrodynamics. PhD Thesis, Politecnico di Milano, Milano, Italy (2010)Google Scholar
  52. Mingotti, G., Gurfil, P.: Mixed low-thrust invariant-manifold transfers to distant prograde orbits around Mars. J. Guid. Control Dyn. 33, 1753–1764 (2010)CrossRefADSGoogle Scholar
  53. Mingotti, G., Topputo, F.: Ways to the Moon: a survey. In: Paper AAS 11-283, Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, LA (2011)Google Scholar
  54. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Combined optimal low-thrust and stable-manifold trajectories to the Earth–Moon halo orbits. Am. Inst. Phys. Conf. Proc. 886, 100–110 (2007)MathSciNetADSGoogle Scholar
  55. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009a)MathSciNetCrossRefzbMATHADSGoogle Scholar
  56. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Numerical methods to design low-energy, low-thrust Sun-perturbed transfers to the Moon. In: Proceedings of the 49th Israel Annual Conference on Aerospace Sciences, Tel Aviv - Haifa, Israel (2009b)Google Scholar
  57. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Earth-Mars transfers with ballistic escape and low-thrust capture. Celest. Mech. Dyn. Astron. 119, 169–188 (2011a)MathSciNetCrossRefADSGoogle Scholar
  58. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Optimal low-thrust invariant manifold trajectories via attainable sets. J. Guid. Control Dyn. 34, 1644–1655 (2011b)CrossRefADSGoogle Scholar
  59. Ocampo, C.A., Rosborough, G.W.: Transfer trajectories for distant retrograde orbiters of the Earth. NASA STI/Recon Technical Report A, 95 (1993)Google Scholar
  60. Ozimek, M.T., Howell, K.C.: Low-thrust transfers in the Earth–Moon system including applications to libration point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010)CrossRefADSGoogle Scholar
  61. Pierson, B.L., Kluever, C.A.: Three-stage approach to optimal low-thrust Earth–Moon trajectories. J. Guid. Control Dyn. 17, 1275–1282 (1994)CrossRefADSGoogle Scholar
  62. Sánchez, J.P., Colombo, C.: Impact hazard protection efficiency by a small kinetic impactor. J. Spacecr. Rocket. 50(2), 380–393 (2013)CrossRefGoogle Scholar
  63. Sánchez, J.P., McInnes, C.R.: Asteroid resource map for near-Earth space. J. Spacecr. Rocket. 48(1), 153–165 (2011a)CrossRefGoogle Scholar
  64. Sánchez, J.P., McInnes, C.R.: On the ballistic capture of asteroids for resource utilization. In: Proceedings of the 62nd International Astronautical Congress, Cape Town, South Africa (2011b)Google Scholar
  65. Sánchez, J.P, García-Yárnoz, D., Alessi, E.M., McInnes, C.R.: Gravitational capture opportunites for asteroid retrieval missions. In: Proceedings of the 63rd International Astronautical Congress, Naples, Italy (2012a)Google Scholar
  66. Sánchez, J.P, García-Yárnoz, D., McInnes, C.R.: Near-Earth asteroid resource accessibility and future capture mission opportunities. In: Global Space Exploration Conference, Washington, DC (2012b)Google Scholar
  67. Scheeres, D.J., Schweickart, R.L.: The mechanics of moving asteroids. In: 2004 Planetary Defense Conference: Protecting Earth from Asteroids, Garden Grove, CA, pp. 23–26 (2004)Google Scholar
  68. Schoenmaekers, J., Horas, D., Pulido, J.A.: Smart-1: with solar electric propulsion to the Moon. In: Proceedings of the 16th International Symposium on Space Flight Dynamics, Pasadena, CA (2001)Google Scholar
  69. Senent, J., Ocampo, C., Capella, A.: Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits. J. Guid. Control Dyn. 28, 280–290 (2005)CrossRefADSGoogle Scholar
  70. Starchville, T.F.: Optimal low-thrust trajectories to Earth–Moon \(l_{2}\) halo orbits (circular problem). Astrodynamics 1997, 1741–1756 (1997)Google Scholar
  71. Sukhanov, A., Eismont, N.: Low thrust transfer to Sun–Earth \(l_1\) and \(l_2\) points with a constraint on the thrust direction. In: Proceedings of the International Conference on Libration Point Orbits and Applications (2002)Google Scholar
  72. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  73. Topputo, F.: Low-Thrust Non-Keplerian Orbits: Analysis, Design, and Control. PhD Thesis, Politecnico di Milano, Milano, Italy, (2007)Google Scholar
  74. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Earth-to-Moon low energy transfers targeting l1 hyperbolic transit orbits. Ann NY Acad Sci 1065, 55–76 (2005a)CrossRefADSGoogle Scholar
  75. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astronaut. Sci. 53, 353–372 (2005b)MathSciNetGoogle Scholar
  76. Whiffen, G.J., Sims, J.A.: Application of the sdc optimal control algorithm to low-thrust escape and capture trajectory optimization. Adv. Astronaut. Sci. 112, 1361–1382 (2002)Google Scholar
  77. Yang, G.: Earth–Moon trajectory optimization using solar electric propulsion. Chin. J. Aeronaut. 20(5), 452–463 (2007)CrossRefGoogle Scholar
  78. Zagouras, C., Markellos, V.V.: Three-dimensional periodic solutions around equilibrium points in Hill’s problem. Celest. Mech. 35(3), 257–267 (1985)MathSciNetCrossRefzbMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Advanced Space Concepts Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations