Celestial Mechanics and Dynamical Astronomy

, Volume 121, Issue 1, pp 17–38 | Cite as

Analytical solution from vector potentials for the gravitational field of a general polyhedron

Original Article


Closed form solutions in terms of elementary functions are given for the Newtonian gravitational field and potential of a general constant density polyhedron, using a gravitational vector potential formulation. The solution constants are given in terms of scalar and vector products involving the position vectors of the field point and the polyhedron’s vertices, giving one analytical expression for each edge of the polyhedron. It is shown that in this vector potential formulation, the gravitational problem is related to the point-in-polygon problem of computational geometry. The solution is derived using a new vector theorem giving the integral over a flat surface of a scalar potential as a line integral of a vector potential around its boundary. The method is also valid in the interior of the polyhedron and can be extended to polyhedra with linear spatial variation of the density. Numerical results are compared with results in the literature and detailed results are given for the five regular Platonic polyhedra.


Gravitational field Vector potential Polyhedra  Analytical solution  Surface integrals Potential theorem 


  1. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 4th edn. Academic, San Diego (1995)Google Scholar
  2. Barnett, C.T.: Theoretical modeling of the magnetic and gravitational fields of an arbitrary shaped three dimensional body. Geophysics 41, 1353–1365 (1976)ADSCrossRefGoogle Scholar
  3. Carré, P., Metherell, A.J.F., Quinn, T.J.: Apropos of: “The gravitational field of a 111 tetrahedron”. Metrologia 23, 119–120 (1987)ADSCrossRefGoogle Scholar
  4. Chai, Y., Hinze, W.J.: Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53, 837–845 (1998)ADSCrossRefGoogle Scholar
  5. Collette, B.I.: Chart for determining the gravity effect of two and three dimensional bodies bounded by arbitrary polygons. Geophys. Prospect. 13, 12–21 (1965)ADSCrossRefGoogle Scholar
  6. Conway, J.T.: Geometric efficiency for a circular detector and a linear source of arbitrary orientation and position. Nucl. Instr. Meth. A 622, 555–566 (2010)ADSCrossRefGoogle Scholar
  7. Conway, J.T.: Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position. Nucl. Instr. Meth. A 640, 99–109 (2011)ADSCrossRefGoogle Scholar
  8. D’Urso, M.G., Russo, P.: A new algorithm for point-in-polygon test. Surv. Rev. 36, 410–422 (2002)CrossRefGoogle Scholar
  9. D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87, 239–252 (2013)ADSCrossRefGoogle Scholar
  10. D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88, 13–29 (2014a)ADSCrossRefGoogle Scholar
  11. D’Urso, M.G.: Gravity effects of polyhedral bodies with linearly varying density. Celest. Mech. Dyn. Astron. 120, 349–372 (2014b) doi:10.1007/s10569-014-9578-z
  12. Gallardo-Delgado, L.A., Perez-Flores, L.A., Gomez-Trevino, E.: A versatile algorithm for joint inversion of gravity and magnetic data. Geophysics 68, 949–959 (2003)ADSCrossRefGoogle Scholar
  13. Garcia-Abdeslem, J.: Gravitational attraction of a rectangular prism with depth dependent density. Geophysics 57, 470–473 (1992)ADSCrossRefGoogle Scholar
  14. Garcia-Abdeslem, J.: Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70, J39–J42 (2005)ADSCrossRefGoogle Scholar
  15. Hamayun, P., Prutkin, I., Tenzer, R.: The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geod. 83, 1163–1170 (2009)ADSCrossRefGoogle Scholar
  16. Holstein, H., Ketteridge, B.: Gravimetric analysis of uniform polyhedra. Geophysics 61, 357–364 (1996)ADSCrossRefGoogle Scholar
  17. Holstein, H., Schurholz, P., Starr, A.J., Chakroborty, M.: Comparison of gravimetric formulas for uniform polyhedra. Geophysics 64, 1434–1446 (1999)ADSCrossRefGoogle Scholar
  18. Holstein, H.: Gravimetric similarity in anomaly formulas for uniform polyhedra. Geophysics 67, 1126–1133 (2002)ADSCrossRefGoogle Scholar
  19. Holstein, H.: Gravimetric similarity in anomaly formulas for polyhedra of spatially linear media. Geophysics 68, 157–167 (2003)ADSCrossRefMathSciNetGoogle Scholar
  20. Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comp. Geom. Theor. Appl. 20, 131–144 (2001)CrossRefMATHMathSciNetGoogle Scholar
  21. Huang, C.W., Shih, T.Y.: On the complexity of point-in-polygon algorithms. Comput. Geosci. 23, 109–118 (1997)ADSCrossRefGoogle Scholar
  22. Leland, K.O.: An algorithm for winding numbers for closed polygonal paths. Math. Comput. 29, 554–558 (1975)CrossRefMATHMathSciNetGoogle Scholar
  23. Mader, K.: Die Bestimmung einer Geoiderhebung aus Messungen mit der Drehwaage von Eötvös. Pure Appl. Geophys. 13, 53–57 (1948)CrossRefGoogle Scholar
  24. Mader, K.: Das Newtonsche Raumpotential prismatischer K örper und seine Ableitungen bis zur dritten Ordnung. In: Sonderheft 11 der Osterreichische Zeitschrift fur Vermessungswesen (1951)Google Scholar
  25. Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371 (1966)ADSCrossRefGoogle Scholar
  26. Nagy, D., Papp, G., Benedek, J.: The gravitational potential and its derivatives for the prism. J. Geod. 74, 552–560 (2000)ADSCrossRefMATHGoogle Scholar
  27. Newton, I.: Principia. Joseph Streater, London (1687)Google Scholar
  28. Metherell, A.J.F., Quinn, T.J.: The gravitational field of a 111 tetrahedron. Metrologia 22, 87–91 (1986)ADSCrossRefGoogle Scholar
  29. Okabe, M.: Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44, 730–741 (1979)ADSCrossRefGoogle Scholar
  30. Petrović, S.: Determination of the potential of homogeneous polyhedral bodies using line integrals. J. Geod. 71, 44–52 (1996)ADSCrossRefMATHGoogle Scholar
  31. Paul, M.K.: The gravity effect of a homogeneous polyhedron for three dimensional interpretation. Pure Appl. Geophys. 112, 553–561 (1974)ADSCrossRefGoogle Scholar
  32. Pohanka, V.: Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect. 36, 733–751 (1988a)ADSCrossRefGoogle Scholar
  33. Pohanka, V.: Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys. Prospect. 46, 391–404 (1998b)ADSCrossRefGoogle Scholar
  34. Scheeres, D.J., Khushalani, R.I., Werner, R.A.: Estimating asteroid density distributions from shape and gravity information. Planet. Space Sci. 48, 965–971 (2000)ADSCrossRefGoogle Scholar
  35. Singh, B., Guptasarma, D.: New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. Geophysics 66, 521–526 (2001)ADSCrossRefGoogle Scholar
  36. Spiegel, M.R.: Vector Analysis and an Introduction to Tensor Analysis. Schaum, New York (1959)Google Scholar
  37. Takahashi, Yu., Scheeres, D.J., Werner, R.A.: Surface gravity fields for asteroids and comets. J. Guid. Control Dynam. 36, 362–374 (2013)Google Scholar
  38. Takin, M., Talwani, M.: Rapid computation of gravitational attraction of topography on a spherical Earth. Geophys. Prospect. 14, 119–142 (1966)ADSCrossRefGoogle Scholar
  39. Talwani, M., Worzel, J.L., Landisman, M.: Rapid gravity computation for two-dimensional bodies with application to the Mendochino submarine fracture zone. J. Geophys. Res. 64, 49–59 (1959)ADSCrossRefGoogle Scholar
  40. Talwani, M., Ewing, M.: Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shape. Geophysics 25, 203–225 (1960)ADSCrossRefGoogle Scholar
  41. Tsoulis, D., Petrovic, S.: On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66, 535–539 (2001)ADSCrossRefGoogle Scholar
  42. Tsoulis, D.: Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77, F1–F11 (2012)ADSCrossRefGoogle Scholar
  43. Waldvogel, J.: The Newtonian potential of homogeneous polyhedra. ZAMP 30, 388–398 (1979)ADSCrossRefMATHMathSciNetGoogle Scholar
  44. Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59, 253–278 (1994)ADSCrossRefMATHGoogle Scholar
  45. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of AgderGrimstadNorway

Personalised recommendations