Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 119, Issue 3–4, pp 237–256 | Cite as

Development of planetary ephemerides EPM and their applications

  • E. V. Pitjeva
  • N. P. Pitjev
Original Article

Abstract

This paper outlines the progress in development of the numerical planet ephemerides EPM—Ephemerides of Planets and the Moon. EPM was first created in the 1970s in support of Russian space flight missions and constantly improved at IAA RAS. Comparison between various available EPM ephemerides (EPM2004, EPM2008, EPM2011) is shown. The first results of the updated EPM2013 version which takes into account the two-dimensional annulus of small asteroids are presented. Currently two main factors drive the progress of planet ephemerides: dynamical models of planet motion and observational data, with the crucial role of spacecraft ranging. EPM ephemerides are the basis for the Russian Astronomical and Nautical Astronomical Yearbooks, are planned to use in the GLONASS and LUNA-RESOURCE programs, and are being used for determination of physical parameters: masses of asteroids, planet rotation parameters and topography, the \(GM_\odot \) and its secular variation, the PPN parameters, and the upper limit on the mass of dark matter in the Solar System. The files containing polynomial approximation for EPM ephemerides (EPM2004, EPM2008, EPM2011) along with TTTDB and ephemerides of Ceres, Pallas, Vesta, Eris, Haumea, Makemake, and Sedna are available from ftp://quasar.ipa.nw.ru/incoming/EPM/. Files are provided in IAA’s binary and ASCII formats, as well as in the SPK format.

Keywords

EPM planetary ephemerides Dynamical model of planet motion Radar and optical observations Asteroid masses PPN parameters \(\dot{GM_\odot }\) \(\dot{G}\) Dark matter 

Notes

Acknowledgments

This work was supported by a Grant from the RAS Presidium Program 22 “Fundamental Problems of Research and Exploration of the Solar System”.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. Washington (1964)Google Scholar
  2. Aleshkina, E.Y., Krasinsky, G.A., Vasilyev, M.V.: Analysis of LLR data by the program system ERA. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds.) Dynamics and Astrometry of Natural and Artificial Celestial Bodies, IAU Colloquium, vol. 165, pp. 227–238. Kluwer, Dordrecht (1997)Google Scholar
  3. Brumberg, V.A.: Essential relativistic celestial mechanics. Adam Huger, Bristol, Philadelphia and New York (1991)zbMATHGoogle Scholar
  4. Carry, B.: Density of asteroids. Planet. Space Sci. 73, 98–118 (2012)CrossRefADSGoogle Scholar
  5. Duboshin, G.N.: Theory of gravitation. Phyzmatgiz, Moscow (1961) (in Russian)Google Scholar
  6. Duriez, L., Vienne, A.: Theory of motion and ephemerides of Hyperion. A&A 324, 366–380 (1997)ADSGoogle Scholar
  7. Fairhead, L., Bretagnon, P.: An analytical formula for the time transformation TB-TT. A&A 229, 240–247 (1990)ADSGoogle Scholar
  8. Fienga, A.: Private communications 2006–2014Google Scholar
  9. Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. A&A 477, 315–327 (2008)CrossRefADSGoogle Scholar
  10. Fienga, A., Laskar, J., Morley, T., et al.: INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. A&A 507, 1675–1686 (2009)CrossRefADSGoogle Scholar
  11. Fienga, A., Laskar, J., Kuchynka, P., et al.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011)CrossRefADSGoogle Scholar
  12. Folkner, W.M.: Private communications 2006–2014Google Scholar
  13. Folkner, W.M.: Results from VLBI measurement of Venus on April 1, 1994, JPL IOM 335.1-94-014 (1994)Google Scholar
  14. Folkner, W. M.: New Horizons project. JPL Interoffice Memorandum, Pasadena, 392R–14-003, 1–11 (2014)Google Scholar
  15. Folkner, W.M., Williams, J.G., Boggs D.H., et al.: The Planetary and Lunar Ephemeris DE 430 and DE 431, JPL IPN progress report 42–196 (2014)Google Scholar
  16. Hildebrand, C.E., Iijima, B.A., Kroger, P.M., Folkner, W.M.: Radio-planetary frame tie from Phobos-2 VLBI data. JPL TDA Prog. Rep. 42–119, 46–82 (1994)Google Scholar
  17. Hilton, J.L., Hohenkerk, C.Y.: A comparison of the high accuracy planetary ephemerides DE421, EPM2008, and INPOP08. In: Proceedings of the “Journees-2010 / Systems de reference spatio-temporels”, / Ed. Capitaine N. Observatoire de Paris, pp. 77–80 (2011)Google Scholar
  18. Jones, D.L., Fomalont, E., Dhawan V., et al.: Very long baseline array astrometric observations of the Cassini spacecraft at Saturn. Astron. J. 141(2), Article 29 (2011)Google Scholar
  19. Konopliv, A.S., Asmar, S.W., Folkner, W.M., et al.: Mars high resolution gravity field from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)CrossRefADSGoogle Scholar
  20. Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., Chunajeva, L.I.: The motion of major planets from observations 1769–1988 and some astronomical constants. Celest. Mech. Dynam. Astron. 55, 1–23 (1993)CrossRefADSGoogle Scholar
  21. Krasinsky, G.A., Vasilyev, M.V.: ERA: knowledge base for ephemeris and dynamic astronomy. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds.) Dynamics and Astrometry of Natural and Artificial Celestial Bodies, IAU Colloquium, vol. 165, pp. 239–244. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  22. Krasinsky, G.A.: Dynamical history of the Earth–Moon system. Celest. Mech. Dyn. Astron. 84(1), 27–55 (2002)CrossRefzbMATHMathSciNetADSGoogle Scholar
  23. Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., Yagudina, E.I.: Hidden mass in the asteroid belt. Icarus 158(1), 98–105 (2002)CrossRefADSGoogle Scholar
  24. Kuchynka, P., Folkner, W.M.: A new approach to determining asteroid masses from planetary range measurements. Icarus 222(1), 243–253 (2013)CrossRefADSGoogle Scholar
  25. Laskar, J., Jacobson, R.A.: GUST86—an analytical ephemeris of the Uranian satellites. A&A 188, 212–224 (1987)ADSGoogle Scholar
  26. Lieske, J.H.: Theory of motion of Jupiter’s Galilean satellites. Astron. Astrophys. 56, 333–352 (1977)zbMATHADSGoogle Scholar
  27. Love, S.G., Brownlee, D.E.: The IRAS dust band contribution to the interplanetary dust complex—evidence seen at 60 and 100 microns. Astron. J. 104(6), 2236–2242 (1992)CrossRefADSGoogle Scholar
  28. Luzum, B., Capitaine, N., Fienga, A., et al.: The IAU 2009 system of astronomical constants: tlhe report of the IAU working group on numerical standards for fundamental astronomy. Celest. Mech. Dyn. Astron. 110, 293–304 (2011)CrossRefzbMATHADSGoogle Scholar
  29. McBride, N., Hughes, D.W.: The spatial density of asteroids and its variation with asteroidal mass. MNRAS 244, 513–520 (1990)ADSGoogle Scholar
  30. Newhall, X.X., Standish, E.M., Williams, J.G.: DE102: a numerical integrated ephemeris of the Moon and planets spanning forty-four centuries. A&A 125, 150–167 (1983)zbMATHADSGoogle Scholar
  31. Pavlov, D.A., Skripnichenko, V.I.: Preliminary results in implementation of a cross-platform version of the ERA software system (in Russian). IAA RAS Trans. 28, 1–8 (2014) Science, St. PetersburgGoogle Scholar
  32. Petit, J.-M., Chambers, J., Franklin, F., Nagasawan, M.: Primordial excitation and depletion of the main belt. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III. University of Arizona Press, Tucson, pp. 711–723 (2002)Google Scholar
  33. Pitjev, N.P., Pitjeva, E.V.: Constraints on dark matter in the solar system. Ast. Lett. 39, 141–149 (2013)CrossRefADSGoogle Scholar
  34. Pitjeva, E.V.: EPM98: the new numerical motion theory for planets and its comparison with DE403 ephemerides of Jet Propulsion Laboratory, Trudy Inst. Appl. Astron. Russ. Acad. Sci. 3, 5–23 (1998)Google Scholar
  35. Pitjeva, E.V.: Study of Mars dynamics from analysis of Viking and Pathfinder lander radar data. IAA RAS Trans. 4, 22–35 (1999). St. Petersburg (in Russian)Google Scholar
  36. Pitjeva, E.V.: Modern numerical ephemerides of planets and the importance of ranging observations for their creation. Celest. Mech. Dyn. Astron. 80, 249–271 (2001)CrossRefADSGoogle Scholar
  37. Pitjeva, E.V.: High-precision ephemerides of planets—EPM and determination of some astronomical constants. Solar Syst. Res. 39(3), 176–186 (2005)CrossRefADSGoogle Scholar
  38. Pitjeva, E.V.: Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft. In: Lazzaro, D., Prialnik, D., Schulz, R., Fernandez, J.A. (eds.) Proceedings of 263th IAU Symposium on Icy Bodies of the Solar System, pp 93–97. Cambridge University Press, Cambridge (2010a)Google Scholar
  39. Pitjeva, E. V.: EPM ephemerides and relativity. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H., (eds.) Proceedings of 261th IAU Symposium. Relativity in Fundamental Astronomy: Dynamics, Reference, Frames, and Data Analysis, pp. 170–178. Cambridge University Press, Cambridge (2010b)Google Scholar
  40. Pitjeva E.V.: Values of some astronomical parameters (\( au, GM_{\odot }, M_{\odot }\)), their possible variations from modern observations and interrelations between them. In: Schuh, H., Bohm, S., Nilsson, T., Capitaine, N. (eds.) In: Proceedings of the “Journees-2011 / Systems de Reference Spatio-temporels, pp. 17–20. Vienna (2012)Google Scholar
  41. Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Sol. Syst. Res. 47, 386–402 (2013)CrossRefADSGoogle Scholar
  42. Pitjeva, E., Bratseva, O., Panfilov, V.: EPM—Ephemerides of Planets and the Moon of IAA RAS: their model, accuracy, availability. In: Capitaine N. (ed.) Proceeedings of the “Journees-2010 / Systems de Reference Spatio-temporels, pp. 49–54. Observatoire de Paris (2011)Google Scholar
  43. Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012)CrossRefADSGoogle Scholar
  44. Pitjeva, E.V., Pitjev, N.P.: Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. MNRAS 432, 3431–3437 (2013)CrossRefADSGoogle Scholar
  45. Pitjeva, E.V., Standish, E.M.: Proposals for the masses of the three largest asteroids, the Moon–Earth mass ratio and the Astronomical Unit. Celest. Mech. Dyn. Astr. 103(4), 365–372 (2009)CrossRefzbMATHADSGoogle Scholar
  46. Poroshina, A., Kosmodamianskiy, G., Zamarashkina, M.: Construction of the numerical motion theories for the main satellites of Mars, Jupiter, Saturn and Uranus. IAA RAS Trans. 26, 75–87 (2012) Science, St. PetersburgGoogle Scholar
  47. Rossi, G.B., Vieira-Martins, R., Camargo, J.I., Assafin, M.: Detailed astrometric analysis of Pluto. Am. Astron. Soc. DDA Meet. 44, 204.43 (2013)Google Scholar
  48. Russell, C.T., Raymond, C.A., Coradini, A., et al.: Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)CrossRefADSGoogle Scholar
  49. Standish Jr, E.M.: Orientation of the JPL ephemerides, DE200/LE200, to the dynamical equinox of J2000. A&A 114, 297–302 (1982)ADSGoogle Scholar
  50. Standish Jr, E.M.: The observational basis for JPL’s DE200, planetary ephemerides of the Astronomical Almanac. A&A 233, 252–271 (1990)ADSGoogle Scholar
  51. Standish, E. M.: JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL Interoffice Memorandum 312.F-98-048, 1–18 (1998)Google Scholar
  52. Standish, E.M.: Planetary and lunar ephemerides: testing alternate gravitational theories. In: Proceedingd AIP Conference of 3rd Mexican Meeting on Mathematicaland Experimental Physics, vol. 977, pp. 254–263 (2008)Google Scholar
  53. Standish, E.M., Newhall, XX, Williams, J.G., Folkner, W.M.: JPL Planetary and Lunar Ephemerides, DE403/LE403. JPL Interoffice Memorandum, Pasadena, 314.10-127, pp. 1–22 (1995)Google Scholar
  54. Standish, E.M., Williams, J.G.: Explanatory Supplement to the Astronomical, 3rd edn, (chapter 8), University Science Books (2012)Google Scholar
  55. Tedesco, E.F., Noah, P.V., Noah, M., Price, S.D.: The supplemental IRAS minor planet survey. Astron. J. 123, 1056–1085 (2002a)CrossRefADSGoogle Scholar
  56. Tedesco, E.F., Egan, M.P., Price, S.D.: The midcourse space experiment infrared minor planet survey. Astron J. 124, 583–591 (2002b)CrossRefADSGoogle Scholar
  57. Vasilyev, M.V., Yagudina, E.I.: Russian Lunar ephemerides EPM-ERA 2012. Sol. Syst. Res. 49, 56–76 (2014)Google Scholar
  58. Verma, A.K., Fienga, A., Laskar, J. et al.: Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. A&A 561, id. A115, 13 p. (2014)Google Scholar
  59. Vienne, A., Duriez, L.: TASS 1.6: ephemerides of the major Saturnian satellites. A&A 297, 588–605 (1995)ADSGoogle Scholar
  60. Vinogradova, T.: The mass of the asteroid belt. Trudy Inst. Appl. Astron. Russ. Acad. Sci. 26, 110–115 (2012)Google Scholar
  61. Yeomans, D.K., Antreasian, P.G., Barriot, J.-P., et al.: Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. Science 289, 2085–2088 (2000)CrossRefADSGoogle Scholar
  62. Yoder, C.F., Standish, E.M.: Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102, 4065–4080 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Applied AstronomyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversityPetrodvoretzRussia

Personalised recommendations