Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 116, Issue 4, pp 357–366 | Cite as

Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis

  • L. Iorio
Original Article

Abstract

The radio tracking apparatus of the New Horizons spacecraft, currently traveling to the Pluto system where its arrival is scheduled for July 2015, should be able to reach an accuracy of 10 m (range) and 0.1 \(\text{ mm } \text{ s }^{-1}\) (range-rate) over distances up to 50 au. This should allow to effectively constrain the location of a putative trans-Plutonian massive object, dubbed Planet X (PX) hereafter, whose existence has recently been postulated for a variety of reasons connected with, e.g., the architecture of the Kuiper belt and the cometary flux from the Oort cloud. Traditional scenarios involve a rock-ice planetoid with \(m_\mathrm{X}\approx 0.7\,m_{\oplus }\) at some 100–200 au, or a Jovian body with \(m_\mathrm{X}\lesssim 5\,m_\mathrm{J}\) at about 10,000–20,000 au; as a result of our preliminary sensitivity analysis, they should be detectable by New Horizons since they would impact its range at a km level or so over a time span 6 years long. Conversely, range residuals statistically compatible with zero having an amplitude of 10 m would imply that PX, if it exists, could not be located at less than about 4,500 au (\(m_\mathrm{X}=0.7\,m_{\oplus }\)) or 60,000 au (\(m_\mathrm{X}=5\,m_\mathrm{J}\)), thus making a direct detection quite demanding with the present-day technologies. As a consequence, it would be appropriate to rename such a remote body as Thelisto. Also fundamental physics would benefit from this analysis since certain subtle effects predicted by MOND for the deep Newtonian regions of our Solar System are just equivalent to those of a distant pointlike mass.

Keywords

Planets Planet X Range perturbations 

References

  1. Anglada-Escudé, G., Boss, A.P., Weinberger, A.J., Thompson, I.B., Butler, R.P., et al.: Astrometry and radial velocities of the planet Host M Dwarf GJ 317: new trigonometric distance, metallicity, and upper limit to the mass of GJ 317b. Astrophys. J. 746, 37 (2012)ADSCrossRefGoogle Scholar
  2. Arridge, C.S., Agnor, C.B., André, N., Baines, K.H., Fletcher, L.N., et al.: Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp. Astron. 33, 753–791 (2012)ADSCrossRefGoogle Scholar
  3. Arzoumanian, Z., Joshi, K., Rasio, F.A., Thorsett, S.E.: Orbital parameters of the PSR B1620–26 triple system. In: Johnston, S., Walker, M.A., Bailes, M. (eds). IAU Colloq. 160: Pulsars: Problems and Progress, vol. 105 of Astronomical Society of the Pacific Conference Series, pp. 525–530. Astronomical Society of the Pacific, San Framcisco (1996)Google Scholar
  4. Blanchet, L., Novak, J.: External field effect of modified Newtonian dynamics in the Solar System. Mon. Notices R. Astron. Soc. 412, 2530–2542 (2011)Google Scholar
  5. Christophe, B., Spilker, L.J., Anderson, J.D., André, N., Asmar, S.W., et al.: OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Exp. Astron. 34(2), 203–242 (2012)Google Scholar
  6. Fernández, J.A.: On the existence of a distant Solar companion and its possible effects on the Oort cloud and the observed comet population. Astrophys. J. 726, 33 (2011)ADSCrossRefGoogle Scholar
  7. Feroz, F., Balan, S.T., Hobson, M.P.: Bayesian evidence for two companions orbiting HIP 5158. Mon. Notices R. Astron. Soc. 416, L104–L108 (2011)ADSCrossRefGoogle Scholar
  8. Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In Klioner, S.A., Seidelmann, P. K., Soffel, M.H. (eds). IAU Symposium, vol. 261 of IAU, Symposium, pp. 159–169 (2010)Google Scholar
  9. Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., et al.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111(3), 363–385 (2011)ADSCrossRefGoogle Scholar
  10. Fountain, G.H., Kusnierkiewicz, D.Y., Hersman, C.B., Herder, T.S., Coughlin, T.B., et al.: The New Horizons spacecraft. Space Sci. Rev. 140, 23–47 (2008)ADSCrossRefGoogle Scholar
  11. Freire, P.C.C., Kramer, M., Wex, N.: Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quantum Gravity 29(18), 184007 (2012)ADSCrossRefGoogle Scholar
  12. Gomes, R.S., Matese, J.J., Lissauer, J.J.: A distant planetary-mass solar companion may have produced distant detached objects. Icarus 184, 589–601 (2006)ADSCrossRefGoogle Scholar
  13. Gomes, R.S., Soares, J.S.: Signatures of a putative planetary Mass Solar companion on the orbital distribution of Tno’s and Centaurs. In: AAS/Division of Dynamical Astronomy Meeting, vol. 43 of AAS/Division of Dynamical Astronomy Meeting, p. 05.01 (2012)Google Scholar
  14. Iorio, L.: Constraints on the location of a putative distant massive body in the Solar System from recent planetary data. Celest. Mech. Dyn. Astron. 112, 117–130 (2012)MathSciNetADSCrossRefGoogle Scholar
  15. Lowell, P.: Memoir on a trans-Neptunian planet. Mem. Lowell Obs. 1(1), 1–135 (1915)MathSciNetADSGoogle Scholar
  16. Lykawka, P.: Trans-Neptunian objects as natural probes to the unknown Solar System. Monogr. Environ. Earth Planets At press (2013)Google Scholar
  17. Lykawka, P.S., Mukai, T.: An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture. Astron. J. 135, 1161–1200 (2008)ADSCrossRefGoogle Scholar
  18. Matese, J.J., Whitmire, D.P.: Persistent evidence of a jovian mass solar companion in the Oort cloud. Icarus 211, 926–938 (2011)ADSCrossRefGoogle Scholar
  19. Melott, A.L., Bambach, R.K.: Nemesis reconsidered. Mon. Notices R. Astron. Soc. 407, L99–L102 (2010)ADSCrossRefGoogle Scholar
  20. Milgrom, M.: MOND effects in the inner Solar System. Mon. Notices R. Astron. Soc. 399, 474–486 (2009)Google Scholar
  21. Perets, H.B., Kouwenhoven, M.B.N.: On the origin of Planets at very wide orbits from the recapture of free floating planets. Astrophys. J. 750, 83 (2012)ADSCrossRefGoogle Scholar
  22. Raup, D.M., Sepkoski, J.J.: Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. 81, 801–805 (1984)ADSCrossRefGoogle Scholar
  23. Richer, H.B., Ibata, R., Fahlman, G.G., Huber, M.: The Pulsar/White Dwarf/Planet system in Messier 4: improved astrometry. Astrophys. J. 597(1), L45–L47 (2003)ADSCrossRefGoogle Scholar
  24. Rodriguez, D.R., Zuckerman, B., Melis, C., Song, I.: The ultra cool brown dwarf companion of WD 0806–661B: age, mass, and formation mechanism. Astrophys. J. Lett. 732, L29 (2011)ADSCrossRefGoogle Scholar
  25. Schmidt, T.O.B., Neuhäuser, R., Seifahrt, A., Vogt, N., Bedalov, A., et al.: Direct evidence of a sub-stellar companion around CT Chamaeleontis. Astron. Astrophys. 491, 311–320 (2008)ADSCrossRefGoogle Scholar
  26. Sigurdsson, S., Richer, H., Hansen, B., Stairs, I., Thorsett, S.: A young white dwarf companion to pulsar B1620–26: evidence for early planet formation. Science 301(5630), 193–196 (2003)ADSCrossRefGoogle Scholar
  27. Soummer, R., Brendan Hagan, J., Pueyo, L., Thormann, A., Rajan, A., Marois, C.: Orbital motion of HR 8799 b, c, d using Hubble Space Telescope data from 1998: constraints on inclination, eccentricity, and stability. Astrophys. J. 741(1), 55 (2011)ADSCrossRefGoogle Scholar
  28. Stern, S.A.: The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. 140, 3–21 (2008)ADSCrossRefGoogle Scholar
  29. Turyshev S.G., Toth V.T.: The pioneer anomaly. Living Rev. Relativ. 13(4), (2010). doi: 10.12942/lrr-2010-4
  30. Tyler, G.L., Linscott, I.R., Bird, M.K., Hinson, D.P., Strobel, D.F., et al.: The New Horizons radio science experiment (REX). Space Sci. Rev. 140, 217–259 (2008)ADSCrossRefGoogle Scholar
  31. Veras, D., Tout, C.A.: The great escape—II. Exoplanet ejection from dying multiple-star systems. Mon. Notices R. Astron. Soc. 422, 1648–1664 (2012)ADSCrossRefGoogle Scholar
  32. Veras, D., Wyatt, M.C.: The Solar System’s post-main-sequence escape boundary. Mon. Notices R. Astron. Soc. 421, 2969–2981 (2012)Google Scholar
  33. Veras, D., Wyatt, M.C., Mustill, A.J., Bonsor, A., Eldridge, J.J.: The great escape: how exoplanets and smaller bodies desert dying stars. Mon. Notices R. Astron. Soc. 417, 2104–2123 (2011)ADSCrossRefGoogle Scholar
  34. Xu, M.H., Wang, G.L., Zhao, M.: The solar acceleration obtained by VLBI observations. Astron. Astrophys. 544, A135 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)BariItaly

Personalised recommendations