A new set of integrals of motion to propagate the perturbed two-body problem

Original Article

Abstract

A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131–150, 2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez’s method for near-circular motion under the \(J_{2}\) perturbation is transformed into linear. Moreover, the method reveals to be competitive with two very popular element methods derived from the Kustaanheimo-Stiefel and Sperling-Burdet regularizations.

Keywords

Perturbed two-body problem Regularization Generalized orbital elements  Orbit propagation Linearization 

Supplementary material

10569_2013_9475_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (pdf 162 KB)

References

  1. Arakida, H., Fukushima, T.: Long-term integration error of Kustaanheimo-Stiefel regularized orbital motion. Astron. J. 120(6), 3333–3339 (2000)ADSCrossRefGoogle Scholar
  2. Arakida, H., Fukushima, T.: Long-term integration error of Kustaanheimo-Stiefel regularized orbital motion. II. Method of variation of parameters. Astron. J. 121(3), 1764–1767 (2001)ADSCrossRefGoogle Scholar
  3. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, AIAA, Reston, VA (1999)Google Scholar
  4. Bombardelli, C., Baù, G., Peláez, J.: Asymptotic solution for the two-body problem with constant tangential thrust acceleration. Celest. Mech. Dyn. Astron 110(3), 239–256 (2011)ADSCrossRefGoogle Scholar
  5. Bond, V.R.: The uniform, regular differential equations of the KS transformed perturbed two-body problem. Celest Mech 10(3), 303–318 (1974)MathSciNetADSMATHCrossRefGoogle Scholar
  6. Bond, V.R.: Error propagation in the numerical solutions of the differential equations of orbital mechanics. Celest. Mech. 27, 65–77 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  7. Bond, V.R., Allman, M.C.: Modern Astrodynamics: Fundamentals and Perturbation Methods. Princeton University Press, Princeton (1996)Google Scholar
  8. Burdet, C.A.: Regularization of the two body problem. Zeitschrift für angewandte Mathematik und Physik 18(3), 434–438 (1967)ADSMATHCrossRefGoogle Scholar
  9. Burdet, C.A.: Theory of Kepler motion: the general perturbed two body problem. Zeitschrift für angewandte Mathematik und Physik 19(2), 345–368 (1968)MathSciNetADSMATHCrossRefGoogle Scholar
  10. Burdet, C.A.: Le mouvement Keplerien et les oscillateurs harmoniques. Journal für die reine und angewandte Mathematik 238, 71–84 (1969)MathSciNetADSMATHGoogle Scholar
  11. Chelnokov, Y.N.: Application of quaternions in the theory of orbital motion of a satellite. I. Cosmic Res 30(6), 612–621 (1993)ADSGoogle Scholar
  12. Deprit, A.: Ideal elements for perturbed Keplerian motions. J. Res. Natl. Bur Standards 79B(1–2), 1–15 (1975)MathSciNetADSGoogle Scholar
  13. Deprit, A., Elipe, A., Ferrer, S.: Linearization: Laplace vs. Stiefel. Celest. Mech. Dyn. Astron. 58(2), 151–201 (1994)Google Scholar
  14. Ferrándiz, J.M.: A general canonical transformation increasing the number of variables with application in the two-body problem. Celest. Mech. 41(1–4), 343–357. (1987/1988)Google Scholar
  15. Fukushima, T.: New two-body regularization. Astron. J. 133(1), 1–10 (2007a)ADSCrossRefGoogle Scholar
  16. Fukushima, T.: Numerical comparison of two-body regularizations. Astron. J. 133(6), 2815–2824 (2007b)ADSCrossRefGoogle Scholar
  17. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, vol. 1. Springer, Berlin (2009)Google Scholar
  18. Hansen, P.A.: Auseinandersetzung einer Zweckmässigen Methode zur Berechnung der absoluten Störungen der Kleinen Planeten. Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5, 41–218 (1857)Google Scholar
  19. Kustaanheimo, P., Stiefel, E.L.: Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik 218, 204–219 (1965)MathSciNetMATHGoogle Scholar
  20. Levi-Civita, T.: Questioni di meccanica classica e relativista. Zanichelli, Bologna (1924)Google Scholar
  21. Peláez, J., Hedo, J.M., de Andrés, P.R.: A special perturbation method in orbital dynamics. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting held January 23–27, 2005, Copper Mountain, Colorado, American Astronautical Society, Univelt, Inc., San Diego, CA, pp 1061–1078 (2005)Google Scholar
  22. Peláez, J., Hedo, J.M., de Andrés, P.R.: A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron. 97(2), 131–150 (2007)ADSMATHCrossRefGoogle Scholar
  23. Sharaf, M.A., Awad, M.E., Najmuldeen, S.A.A.: Motion of artificial satellites in the set of Eulerian redundant parameters (III). Earth Moon Planets 56(2), 141–164 (1992)ADSMATHCrossRefGoogle Scholar
  24. Sperling, H.: Computation of Keplerian Conic sections. Am. Rocket Soc. J. 31(5), 660–661 (1961)Google Scholar
  25. Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, New York (1971)MATHCrossRefGoogle Scholar
  26. Stiefel, E., Rössler, M., Waldvogel, J., Burdet, C.A.: Methods of Regularization for Computing Orbits in Celestial Mechanics. Technical report, NASA CR-769, Washington, DC (1967)Google Scholar
  27. Sundman, K.F.: Recherches sur le problème des trois corps. Acta Societatis Scientiarum Fennicae 34(6), 1–43 (1907)Google Scholar
  28. Sundman, K.F.: Mémoire sur le problème des trois corps. Acta Mathematica 36(1), 105–179 (1912)MathSciNetMATHCrossRefGoogle Scholar
  29. Szebehely, V.: Regularization in celestial mechanics. In: Oden J (ed) Computational Mechanics, Lecture Notes in Mathematics, vol 461, Springer, Berlin, pp 257–263, http://dx.doi.org/10.1007/BFb0074156 (1975)
  30. Szebehely, V., Bond, V.: Transformations of the perturbed two-body problem to unperturbed harmonic oscillators. Celest. Mech. 30, 59–69 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  31. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 2nd edn. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Giulio Baù
    • 1
  • Claudio Bombardelli
    • 2
  • Jesús Peláez
    • 2
  1. 1.CISAS “G. Colombo”University of PadovaPadovaItaly
  2. 2.Space Dynamics GroupSchool of Aeronautics, Technical University of MadridMadridSpain

Personalised recommendations