Celestial Mechanics and Dynamical Astronomy

, Volume 115, Issue 4, pp 397–404 | Cite as

A note on algebraic potentials and Morales–Ramis theory

Original Article

Abstract

We present various properties of algebraic potentials, and then prove that some Morales–Ramis theorems readily apply for such potentials even if they are not in general meromorphic potentials. This allows in particular to precise some non-integrability proofs in Celestial Mechanics, where the mutual distances between the bodies appear in the potential, and thus making this analysis unavoidable.

Keywords

Non-integrability Homogeneous potentials Differential Galois theory 

Mathematics Subject Classfication (2000)

MSC 37J30 MSC 70F15 

References

  1. Boucher, D.: Sur la non-intégrabilité du problème plan des trois corps de masses égales a un le long de la solution de lagrange. CR Acad. Sci. Paris 331, 391–394 (2000)MathSciNetADSMATHGoogle Scholar
  2. Combot, T.: Non-integrability of the equal mass n-body problem with non-zero angular momentum. Celest. Mech. Dyn. Astron. 114, 319–340 (2012). doi:10.1007/s10569-012-9417-z
  3. Kimura, T.: On Riemann’s equations which are solvable by quadratures. Funkcial Ekvac 12(269–281), 1970 (1969)Google Scholar
  4. Maciejewski, A., Przybylska, M.: Non-integrability of the generalized two fixed centres problem. Celest. Mech. Dyn. Astron. 89(2), 145–164 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  5. Maciejewski, A., Przybylska, M.: Non-integrability of the three-body problem. Celest. Mech. Dyn. Astron. 110, 17–30 (2011). doi: 10.1007/s10569-010-9333-z Google Scholar
  6. Morales-Ruiz, J., Ramis, J.: Galoisian obstructions to integrability of Hamiltonian systems. Methods Appl. Anal. 8(1), 33–96 (2001a)MathSciNetMATHGoogle Scholar
  7. Morales-Ruiz, J., Ramis, J.: A note on the non-integrability of some Hamiltonian systems with a homogeneous potential. Methods Appl. Anal. 8(1), 113–120 (2001b)MathSciNetMATHGoogle Scholar
  8. Morales-Ruiz, J., Simon, S.: On the meromorphic non-integrability of some \( n \)-body problems. Discret. Contin. Dyn. Syst. (DCDS-A) 24(4), 1225–1273 (2009)Google Scholar
  9. Morales-Ruiz, J., Ramis, J., Simó, C.: Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. In: Annales Scientifiques de l’Ecole Normale Supérieure, vol. 40, pp. 845–884. Elsevier, Amsterdam (2007)Google Scholar
  10. Parshin, A.N.: Algebraic Geometry III: Complex Algebraic Varieties. Algebraic Curves and Their Jacobians (1997)Google Scholar
  11. Tsygvintsev, A.: The meromorphic non-integrability of the three-body problem. Journal fuer die reine und angewandte Mathematik (Crelle’s Journal) 2001(537), 127–149 (2001)Google Scholar
  12. Tsygvintsev, A.: On some exceptional cases in the integrability of the three-body problem. Celest. Mech. Dyn. Astron. 99(1), 23–29 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  13. Van der Put, M., Singer, M.: Galois Theory of Linear Differential Equations, vol. 328. Springer, Berlin (2003)Google Scholar
  14. Ziglin, S.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. i. Funct. Anal. Its Appl. 16(3), 181–189 (1982)MathSciNetCrossRefGoogle Scholar
  15. Ziglin, S.: Integrals in involution for groups of linear symplectic transformations and natural mechanical systems with homogeneous potential. Funct. Anal. Its Appl. 34(3), 179–187 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.IMCCEParisFrance

Personalised recommendations