Celestial Mechanics and Dynamical Astronomy

, Volume 115, Issue 3, pp 311–331 | Cite as

Comparison of low-energy lunar transfer trajectories to invariant manifolds

  • Rodney L. Anderson
  • Jeffrey S. Parker
Original Article


In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants is computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.


Lunar transfers Invariant manifolds Dynamical systems theory  Libration point orbits Earth-Moon landing geometry Lyapunov orbits 



The authors would like to thank Ted Sweetser for his support and for making this work possible. They would also like to thank Roby Wilson and Damon Landau for their helpful comments and reviews of this work. The research presented in this paper has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. Alessi, E.M., Gómez, G., Masdemont, J.J.: Leaving the moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul. 14(12), 4153–4167 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Anderson, R.L., Lo, M.W.: Virtual exploration by computing global families of trajectories with supercomputers. In: Vallado, D.A., Gabor, M.J., Desai, P.N. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 1855–1874. American Astronautical Society, Univelt, Copper Mountain, Co (2005)Google Scholar
  3. Anderson, R.L., Parker, J.S.: A survey of ballistic transfers to the lunar surface. In: 21st AAS/AIAA Space Flight Mechanics Meeting, AAS 11-278. New Orleans, LA, USA (2011)Google Scholar
  4. Anderson, R.L., Parker, J.S.: Survey of ballistic transfers to the lunar surface. J. Guid. Control Dyn. 35(4), 1256–1267 (2012)CrossRefGoogle Scholar
  5. Baoyin, H., McInnes, C.R.: Trajectories to and from the Lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006)CrossRefGoogle Scholar
  6. Broschart, S.B., Chung, M.K.J., Hatch, S.J., Ma, J.H., Sweetser, T.H., Weinstein-Weiss, S. S. Angelopoulos, V. : Preliminary trajectory design for the ARTEMIS lunar mission. In: Rao, A.V., Lovell, T.A., Chan, F.K., Cangahuala, L.A. (eds.) Advances in the Astronautical Sciences, American Astronautical Society, pp. 1329–1344. Univelt, Pittsburgh PA (2009)Google Scholar
  7. Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of Grail (Gravity Recovery and Interior Laboratory) mission. In: AIAA Guidance, Navigation and Control Conference, AIAA 2010-8384. Toronto, ON, Canada (2010)Google Scholar
  8. Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107(4), 471–485 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109(3), 241–264 (2011)MathSciNetADSCrossRefGoogle Scholar
  11. Easton, R.W.: Regularization of vector fields by surgery. J. Differ. Equ. 10, 92–99 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. Fehlberg, E.: Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge–Kutta Formulas with Stepsize Control. Technical Report NASA TR R-287 (1968)Google Scholar
  13. Folkner, W.M., Williams, J.G., Boggs, D.H.: The Planetary and Lunar Ephemeris De421. Interoffice Memo IOM 343R-08-003. Jet Propulsion Laboratory (2008)Google Scholar
  14. Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study of the transfer from the earth to a halo orbit around the equilibrium point \(\text{ L}_1\). Celest. Mech. Dyn. Astron. 56, 541–562 (1993)ADSzbMATHCrossRefGoogle Scholar
  15. Hatch, S.J., Roncoli, R.B., Sweetser, T.H.: Grail trajectory design: Lunar orbit insertion through science. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA-2010-8385. Toronto, ON, Canada (2010)Google Scholar
  16. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the moon. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 00-166. Clearwater, FL, USA (2000)Google Scholar
  17. Krogh, F.T.: DIVA/SIVA, Chapter 14.1 of Math77, Release 4.0. Technical Report JPL D-1341, Rev. C, Jet Propulsion Laboratory, Pasadena (1992)Google Scholar
  18. Lo, M.W., Chung, M.K.J.: Lunar sample return via the interplanetary superhighway. In: AIAA/AAS Astrodynamics Specialist Meeting, Paper AIAA 2002-4718. Monterey, CA, USA (2002)Google Scholar
  19. McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Miele, A.: Theorem of image trajectories in the Earth–Moon space. Astronaut. Acta 6(51), 225–232 (1960)Google Scholar
  21. Mission Evaluation Team: Apollo 11 Mission Report. Technical Report NASA SP-238, National Aeronautics and Space Administration (1971)Google Scholar
  22. NASA: NASA’s Exploration Systems Architecture Study. Technical Report NASA-TM-2005-214062, National Aeronautics and Space Administration (2005)Google Scholar
  23. Ozimek, M., Howell, K.: Low-thrust transfers in the earth-moon system including applications to libration point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010)CrossRefGoogle Scholar
  24. Parker, J.S.: Families of low-energy lunar halo transfers. In: Vadali, S.R., Cangahuala, L.A., Paul, W., Schumacher, J., Guzman, J.J. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 483–502. American Astronautical Society, Univelt, Tampa, FL (2006)Google Scholar
  25. Parker, J.S.: Low-Energy Ballistic Lunar Transfers. PhD thesis, University of Colorado at Boulder, Boulder, CO, USA (2007)Google Scholar
  26. Parker, J.S., Lo, M.W.: Shoot the moon 3D. In: Williams, B.G., D’Amario, L.A., Howell, K.C., Hoots, F.R. (eds.) Advances in the Astronautical Sciences, Astrodynamics, pp. 2067–2086. American Astronautical Society, Univelt, Lake Tahoe, NV (2005)Google Scholar
  27. Roncoli, R.B.: Lunar Constants and Models Document. Technical Report JPL D-32296, Jet Propulsion Laboratory (2005)Google Scholar
  28. Roncoli, R.B., Fujii, K.K.: Mission design overview for the gravity recovery and interior laboratory (GRAIL) mission. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2010-8383. Toronto, ON, Canada (2010)Google Scholar
  29. Seidelmann, P.K. (ed.): Explanatory Supplement to the Astronomical Almanac. University Science Books, Sausalito (1992)Google Scholar
  30. Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations. W. H. Freeman, San Francisco (1975)Google Scholar
  31. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  32. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Interplanetary and lunar transfers using libration points. In: Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548), pp. 583–588. Munich, Germany (2004)Google Scholar
  33. Von Kirchbach, C., Zheng, H., Aristoff, J., Kavanagh, J., Villac, B.F., Lo, M.W.: Trajectories leaving a sphere in the restricted three-body problem. In: Vallado, D.A., Gabor, M.J., Desai, P.N. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 1875–1902. American Astronautical Society, Univelt, Copper Mountain, CO (2005)Google Scholar
  34. Woodard, M., Folta, D., Woodfork, D.: ARTEMIS: the first mission to lunar libration orbits. In: 21st International Symposium on Space Flight Dynamics. Centre National d’Études Spatiales, Toulouse, France (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations