Celestial Mechanics and Dynamical Astronomy

, Volume 115, Issue 1, pp 91–105 | Cite as

Dynamics and control of dual-spin gyrostat spacecraft with changing structure

  • V. S. Aslanov
  • V. V. Yudintsev
Original Article


We study the motion of the free dual-spin gyrostat spacecraft that consists of the platform with a triaxial ellipsoid of inertia and the rotor with a small asymmetry with respect to the axis of rotation. The system with perturbations caused by a small asymmetry of the rotor and the time-varying moments of inertia of the rotor is considered. The dimensionless equations of the system are written in Serret–Andoyer canonical variables. The system’s phase space is described. It is shown that changes in the moments of inertia of the gyrostat leads to the deformation of the phase space. The internal torque control law is proposed that keeps the system at the center point in the phase space. The effectiveness of the control is shown through a numerical simulation. It’s shown that the uncontrolled gyrostat can lose its axis orientation. Proposed internal torque keeps the initial angle between the axis of the gyrostat and the total angular momentum vector.


Variable structure gyrostat spacecraft Serret–Andoyer variables Internal torque Stabilization control Stabilization control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aslanov, V.S.: Dynamics of free dual-spin spacecraft. Eng. Lett. (International Association of Engineers) 19, 271–278. ISSN:1816093X (2011)Google Scholar
  2. Aslanov V.S.: Integrable cases in the dynamics of axial gyrostats and adiabatic invariants. Nonlinear Dyn. 68, 259–273 (2012). doi: 10.1007/s11071-011-0225-x MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aslanov V.S., Doroshin A.V.: Chaotic dynamics of an unbalanced gyrostat. J. Appl. Math. Mech. 74, 524–535 (2010)CrossRefGoogle Scholar
  4. Cochran J.E., Shu P.H., Rew S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5, 37–42 (1982)zbMATHCrossRefGoogle Scholar
  5. Deprit A.: Free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35, 424–428 (1967). doi: 10.1119/1.1974113 ADSCrossRefGoogle Scholar
  6. Elipe A., Lanchares V.: Exact solution of a triaxial gyrostat with one rotor. Celest. Mech. Dyn. Astron. 101, 49–68 (2008). doi: 10.1007/s10569-008-9129-6 MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Hall C.: Spinup dynamics of gyrostats. J. Guid. Control Dyn. 18, 1177–1183 (1995)zbMATHCrossRefGoogle Scholar
  8. Hall C., Rand R.: Spinup dynamics of axial dual-spin spacecraft. J. Guid. Control Dyn. 17(1), 30–37 (1994)CrossRefGoogle Scholar
  9. Hall C.D.: Equivalence of two classes of dual-spin spacecraft spinup problems. J. Guid. Control Dyn. 15, 1033 (1992)ADSCrossRefGoogle Scholar
  10. Hughes P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)Google Scholar
  11. Lanchares V., Inarrea M., Salas J.P.: Spin rotor stabilization of a dual-spin spacecraft with time dependent moments of inertia. Int. J. Bifurcat. Chaos 8, 609–619 (1998)zbMATHCrossRefGoogle Scholar
  12. Sarychev V.A., Mirer S.A.: Relative equilibria of a gyrostat satellite with internal angular momentum along a principal axis. Acta Astronautica 49, 641–644 (2001)ADSCrossRefGoogle Scholar
  13. Shirazi K.H., Ghaffari-Saadat M.H.: Bifurcation and chaos in an apparent-type gyrostat satellite. Nonlinear Dyn. 39, 259–274 (2005). doi: 10.1007/s11071-005-3049-8 MathSciNetzbMATHCrossRefGoogle Scholar
  14. Wittenburg J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Samara State Aerospace UniversitySamaraRussia

Personalised recommendations