Celestial Mechanics and Dynamical Astronomy

, Volume 113, Issue 4, pp 435–452 | Cite as

On the third-body perturbations of high-altitude orbits

  • Martin Lara
  • Juan F. San-Juan
  • Luis M. López
  • Paul J. Cefola
Original Article


The long-term effects of a distant third-body on a massless satellite that is orbiting an oblate body are studied for a high order expansion of the third-body disturbing function. This high order may be required, for instance, for Earth artificial satellites in the so-called MEO region. After filtering analytically the short-period angles via averaging, the evolution of the orbital elements is efficiently integrated numerically with very long step-sizes. The necessity of retaining higher orders in the expansion of the third-body disturbing function becomes apparent when recovering the short-periodic effects required in the computation of reliable osculating elements.


Third-body perturbation Lie transforms Averaging High-altitude orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anselmo L., Pardini C.: Long-term dynamical evolution of high area-to-mass ratio debris released into high earth orbits. Acta Astronaut. 67, 204–216 (2010)ADSCrossRefGoogle Scholar
  2. Boccaletti D., Pucacco G.: Theory of Orbits. 2: Perturbative and Geometrical Methods, pp. 10. Springer, Berlin (1998)Google Scholar
  3. Broucke R.A.: Long-term third-body effects via double averaging. J. Guidance Control Dyn. 26(1), 27–32 (2003)CrossRefGoogle Scholar
  4. Brouwer D.: Solution of the problem of aritifical satellite theory without drag. Astron. J. 64(1274), 378–396 (1959)MathSciNetADSCrossRefGoogle Scholar
  5. Brouwer D., Clemence G.M.: Methods of Celestial Mechanics, pp. 296ff. Academic Press, New York (1961)Google Scholar
  6. Campbell J.A., Jefferys W.H.: Equivalence of the perturbation theories of Hori and Deprit. Celest. Mech. 2(4), 467–473 (1970)ADSzbMATHCrossRefGoogle Scholar
  7. Cefola, P., Broucke, R.: On the Formulation of the Gravitational Potential in Terms of Equinoctial Variables. Paper AIAA 75-9, American Institute of Aeronautics and Astronautics (1975)Google Scholar
  8. Cefola, P.J., Yurasov, V.S., Folcik, Z.J., Phelps, E.B., Proulx, R.J., Nazarenko, A.I.: Comparison of the DSST and the USM Semi-Analytical Orbit Propagators. Paper AAS 03-236, American Astronautical Society (2003)Google Scholar
  9. Chao C.C., Gick R.A.: Long-term evolution of navigation satellite orbits: GPS/GLONASS/Galileo. Adv. Space Res. 34, 1221–1226 (2004)ADSCrossRefGoogle Scholar
  10. Coffey S.L., Deprit A., Miller B.R.: The critical inclination in artificial satellite theory. Celest. Mech. 39(4), 365–406 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Collins, S.K.: Long Term Prediction of High Altitude Orbits. PhD Thesis, MIT (1981)Google Scholar
  12. Collins, S.K., Cefola, P.J.: Double Averaged Third Body Model for Prediction of Super-Synchronous Orbits over Long Time Spans, p. 63. Paper AAS 79-135, American Astronautical Society (1979)Google Scholar
  13. Deprit A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Deprit A.: Delaunay normalisations. Celest. Mech. 26(1), 9–21 (1982)MathSciNetADSCrossRefGoogle Scholar
  15. Deprit A., Rom A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2, 166–206 (1970)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Ely T.A.: Eccentricity impact on east-west stationkeeping for global positioning system class orbits. J. Guidance Control Dyn. 25(2), 352–357 (2002)CrossRefGoogle Scholar
  17. Ely T.A., Howell K.C.: Long term evolution of artificial satellite orbits due to resonant tesseral harmonics. J. Astronaut. Sci. 44, 167–190 (1996)Google Scholar
  18. Ely T.A., Howell K.C.: Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni-solar perturbations. Int. J. Dyn. Stab. Syst. 12(4), 243–269 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Gedeon G.S.: Tesseral resonance effects on satellite orbits. Celest. Mech. 1(2), 167–189 (1969)ADSzbMATHCrossRefGoogle Scholar
  20. Giacaglia G.: Lunar perturbations of artificial satellites of the earth. Celest. Mech. 9, 239–267 (1974)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. Green, A.J.: Orbit Determination and Prediction Processes for Low Altitude Satellites. PhD Thesis, MIT (1979)Google Scholar
  22. Hori G.-i.: Theory of general perturbation with unspecified canonical variable. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)ADSGoogle Scholar
  23. Kelly T.S.: A note on first-order normalizations of perturbed Keplerian systems. Celest. Mech. Dyn. Astron. 46, 19–25 (1989)ADSzbMATHCrossRefGoogle Scholar
  24. Kozai, Y.: On the Effects of the Sun and the Moon upon the Motion of a Close Earth Satellite, p. 10, SAO Special Report #22 Smithsonian Astrophysical Observatory, Cambridge, MA (1959)Google Scholar
  25. Kozai Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67(7), 446–461 (1962)MathSciNetADSCrossRefGoogle Scholar
  26. Lara M., Palacián J.F., Russell R.P: Mission design through averaging of perturbed Keplerian systems: the paradigm of an enceladus orbiter. Celest. Mech. Dyn. Astron. 108(1), 1–22 (2010)ADSzbMATHCrossRefGoogle Scholar
  27. Laskar J., Boué G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522(A60), 11 (2010)Google Scholar
  28. McClain, W.D.: A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging, Volume 1: The Generalized Method of Averaging Applied to the Artificial Satellite Problem, Computer Sciences Corporation CSC/TR-77/6010 (1977)Google Scholar
  29. Métris G.: Mean values of particular functions in the elliptic motion. Celest. Mech. Dyn. Astron. 52, 79–84 (1991a)ADSzbMATHCrossRefGoogle Scholar
  30. Métris, G.: Théorie du mouvement des satellites artificiels—Développement des équations du mouvement moyen—Application à l’étude des longues périodes, p. 188, PhD Thesis, Observatoire de Paris (1991b)Google Scholar
  31. Métris G., Exertier P.: Semi-analytical theory of the mean orbital motion. Astron. Astrophys. 294, 278–286 (1995)ADSGoogle Scholar
  32. Meyer K.R., Hall G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Vol. 90. Springer, New York (1992)Google Scholar
  33. Montenbruck O., Gill E.: Satellite Orbits Models Methods and Applications. Springer, New york (2001)Google Scholar
  34. Osácar C., Palacián J.F.: Decomposition of functions for elliptic orbits. Celest. Mech. Dyn. Astron. 60, 207–223 (1994)ADSzbMATHCrossRefGoogle Scholar
  35. Palacián J.F.: Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field. Celest. Mech. Dyn. Astron. 98, 219–249 (2007)ADSzbMATHCrossRefGoogle Scholar
  36. Prado A.F.B.A.: Third-body perturbation in orbits around natural satellites. J. Guidance Control Dyn. 26(1), 33–40 (2003)CrossRefGoogle Scholar
  37. Proulx, R., McClain, W.C., Early, L., Cefola, P.: A Theory for the Short Periodic Motion due to the Tesseral Harmonic Gravity Field, p. 20, Paper AAS 81-180, American Astronautical Society, (1981)Google Scholar
  38. Rossi A.: Resonant dynamics of Medium earth orbits: space debris issues. Celest. Mech. Dyn. Astron. 100(4), 267–286 (2008)ADSCrossRefGoogle Scholar
  39. Slutsky, M.: First Order Short Periodic Motion of and Artificial Satellite Due to Third-Body Perturbations: Numerical Evaluation, p. 22, Paper 83-393, American Astronautical Society (1983)Google Scholar
  40. Steichen, D.: An averaging method to study the motion of lunar artificial satellites. Celest. Mech. Dyn. Astron. 68, 205–224; (part I) and 225–247 (part II) (1998)Google Scholar
  41. Valk S., Lemaître A., Deleflie F.: Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res. 43, 1070–1082 (2009)ADSCrossRefGoogle Scholar
  42. Vashkov’yak M.A.: A numerical-analytical method for studying the orbital evolution of distant planetary satellites. Astron. Lett. 31(1), 64–72 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Martin Lara
    • 1
  • Juan F. San-Juan
    • 2
  • Luis M. López
    • 3
  • Paul J. Cefola
    • 4
  1. 1.Columnas de Hercules 1San FernandoSpain
  2. 2.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroñoSpain
  3. 3.Departamento de Ingeniería MecánicaUniversidad de La RiojaLogroñoSpain
  4. 4.University at Buffalo, The State University of New YorkAmherstUSA

Personalised recommendations