Celestial Mechanics and Dynamical Astronomy

, Volume 112, Issue 4, pp 427–444

On the existence of J2 invariant relative orbits from the dynamical system point of view

Original Article


The present paper addresses the existence of J2 invariant relative orbits with arbitrary relative magnitude over the infinite time using the Routh reduction and Poincaré techniques in the J2 Hamiltonian problem. The current research also proposes a novel numerical searching approach for J2 invariant relative orbits from the dynamical system point of view. A new type of Poincaré mapping is defined from different central manifolds of the pseudo-circular orbits (parameterized by the Jacobi energy E, the polar component of momentum Hz and the measure of distance Δr between the fixed point and its central manifolds) to the nodal periods Td and the drifts of longitude of the ascending node during one period (ΔΩ), which differs from Koon et al.’s (AIAA 2001) definition on central manifolds parameterized by the same fixed point. The Poincaré mapping is surjective because it compresses the three-dimensional variables into two-dimensional images, and the mapping degenerates into a bijective mapping in consideration of the fixed points. An iteration algorithm to the degenerated bijective mapping is proposed from the continuation procedure to perform the ergodic representation of E- and Hz-contour maps on the space of Td–ΔΩ. For the surjective mapping with Δr ≠ 0, different pseudo-circular or elliptical orbits may share the same images. Hence, the inverse surjective mapping may achieve non-unique variables from a single image, which makes the generation of J2 invariant relative orbits possible. The pseudo-circular or elliptical orbits generated from the surjective mapping will be defined in different meridian planes. Hence, the critical contribution of the present paper is the assignment of J2 invariant relative orbits to different invariant parameters E and Hz depending on the E- and Hz-contour map, which will hold J2 invariant relative orbits for extended durations. To investigate the high-order nonlinearity neglected by previous studies, a formation configuration with a large magnitude of 500 km is successfully generated from the theory developed in the present work, which is beyond the scope of the linear conditions of J2 invariant relative orbits. Therefore, the existence of J2 invariant relative orbit with an arbitrary relative magnitude over the infinite time is achieved from the dynamical system point of view.


Formation flying J2 Invariant relative orbit Routh reduction Pseudo-circular/elliptical orbit Dynamical system Poincaré mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfriend, K.T., Yan, H.: An orbital elements approach to the nonlinear formation flying problem. In: International Formation Flying Symposium, Toulouse, France, Oct 29–31 (2002)Google Scholar
  2. Breger, L., How, P.: Partial J 2-invariance for spacecraft formations. In: AIAA/AAS Astrodynamics Conference, Keystone, AIAA pp. 2006–6585 (2006)Google Scholar
  3. Broucke R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58, 99–123 (1994)MathSciNetADSCrossRefGoogle Scholar
  4. Brouwer D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(9), 378–397 (1959)MathSciNetADSCrossRefGoogle Scholar
  5. D’Amico S., Montenbruck O.: Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29(3), 554–563 (2006)CrossRefGoogle Scholar
  6. Deprit A., Rom A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2, 166–206 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  7. Duan, X., Bainum, P.M.: Design of spacecraft formation flying orbits. In: AAS, pp. 03–588 (2003)Google Scholar
  8. Fasano G., D’Errico M.: Modeling orbital relative motion to enable formation design from application requirements. Celest. Mech. Dyn. Astron. 105, 113–139 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  9. Halsall M., Palmer P.L.: Modelling natural formations of LEO satellites. Celest. Mech. Dyn. Astron. 99, 105–127 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  10. Koon, W.S., Marsden, J.E., Murray, R.M., Masdemont, J.: J 2 Dynamics and formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, AIAA, pp. 2001–4090 (2001)Google Scholar
  11. Martinusi V., Gurfil P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celestl. Mech. Dyn. Astron. 111, 387–414 (2011)ADSCrossRefGoogle Scholar
  12. Montenbruck O., Kirschner M., D’Amico S., Bettadpur S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006)MATHCrossRefGoogle Scholar
  13. Sabatini M., Izzo D., Palmerini G.: Minimum control for spacecraft formations in a J 2 perturbed environment. Celestl. Mech. Dynl. Astron. 105, 141–157 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  14. Schaub H., Alfriend K.T.: J 2 Invariant relative orbits for spacecraft formations. Celestl. Mech. Dyn. Astron. 79, 77–95 (2001)ADSMATHCrossRefGoogle Scholar
  15. Sengupta P., Vadali S.R., Alfriend K.T.: Second-order state transition for relative motion near perturbed, elliptic orbits. Celestl. Mech. Dyn. Astron. 97, 101–129 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  16. Vadali, S.R., Schaub, H., Alfriend, K.T.: Initial conditions and fuel-optimal control for formation flying satellite. In: AIAA GNC Conference, Portland, Oregon, paper no. AIAA, pp. 99–426 (1999)Google Scholar
  17. Vadali S., Sengupta P., Yan H., Alfriend K.T.: Fundamental frequencies of satellite relative motion and control of formations. J. Guid. Control Dyn. 31(5), 1239–1248 (2008)CrossRefGoogle Scholar
  18. Xu M., Xu S.J.: J 2 Invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5), 585–595 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  19. Xu M., Xu S.J.: Nonlinear dynamical analysis for displaced orbits above the planet. Celestl. Mech. Dyn. Astron. 102(4), 327–353 (2008)ADSMATHCrossRefGoogle Scholar
  20. Yan, H., Alfriend, K.: Numerical searches and optimal control of J 2 invariant orbits. In: 16th Annual AAS/AIAA Spaceflight Mechanics Meeting, Tampa, AAS, pp. 06–163 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Aerospace Engineering, School of AstronauticsBeihang UniversityBeijingChina

Personalised recommendations