Celestial Mechanics and Dynamical Astronomy

, Volume 112, Issue 3, pp 283–330 | Cite as

Bodily tides near spin–orbit resonances

Original Article


Spin–orbit coupling can be described in two approaches. The first method, known as the “MacDonald torque”, is often combined with a convenient assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because derivation of the expression for the MacDonald torque tacitly fixes the rheology of the mantle by making Q scale as the inverse tidal frequency. Spin–orbit coupling can be treated also in an approach called “the Darwin torque”. While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been fully exploited in the literature, where Q is often assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence it is necessary to enrich the theory of spin–orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles of solid-state mechanics, i.e., from the expression for the mantle’s compliance in the time domain. We also explain that the tidal torque includes not only the customary, secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin–Kaula expansion for the tidal torque smoothly passes zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). Thus, we prepare a foundation for modeling entrapment of a despinning primary into a resonance with its secondary. The roles of the primary and secondary may be played, e.g., by Mercury and the Sun, correspondingly, or by an icy moon and a Jovian planet. We also offer a possible explanation for the “improper” frequency-dependence of the tidal dissipation rate in the Moon, discovered by LLR.


Bodily tides Body tides Land tides Librations Exoplanets Satellites Spin–orbit resonances Tidal torques Phobos Mercury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10569_2011_9397_MOESM1_ESM.pdf (109 kb)
ESM 1 (PDF 109 kb)
10569_2011_9397_MOESM2_ESM.pdf (51 kb)
ESM 2 (PDF 52 kb)
10569_2011_9397_MOESM3_ESM.pdf (43 kb)
ESM 3 (PDF 43 kb)
10569_2011_9397_MOESM4_ESM.pdf (38 kb)
ESM 4 (PDF 38 kb)
10569_2011_9397_MOESM5_ESM.pdf (41 kb)
ESM 5 (PDF 42 kb)


  1. Alterman Z., Jarosch H., Pekeris C.: Oscillations of the Earth. Proc. R. Soc. Lond. Ser. A 252, 80–95 (1959)ADSMATHCrossRefGoogle Scholar
  2. Andrade E.N.C.: On the viscous flow in metals, and allied phenomena. Proc. R. Soc. Lond. Ser. A 84, 1–12 (1910)ADSCrossRefGoogle Scholar
  3. Benjamin D., Wahr J., Ray R.D., Egbert G.D., Desai S.D.: Constraints on mantle anelasticity from geodetic observations, and implications for the J 2 anomaly. Geophys. J. Int. 165, 3–16 (2006)ADSCrossRefGoogle Scholar
  4. Bills B.G., Neumann G.A., Smith D.E., Zuber M.T.: Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res. 110, 2376–2406 (2005). doi: 10.1029/2004JE002376 Google Scholar
  5. Biot, M.A.: Theory of stress–strain relaxation in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25, 1385–1391 (1954) http://www.pmi.ou.edu/Biot2005/papers/FILES/054.PDF Google Scholar
  6. Biot, M.A.: Linear thermodynamics and the mechanics of solids. In: Proceedings of the Third US National Congress of Applied Mechanics, held at Brown University, pp. 1–18. Published by ASME, NY, June (1958) http://www.pmi.ou.edu/Biot2005/papers/FILES/076.PDF
  7. Birger B.I.: Attenuation of seismic waves and the universal rheological model of the earth’s mantle. Izvestiya. Phys. Solid Earth 49, 635–641 (2007)ADSCrossRefGoogle Scholar
  8. Castillo-Rogez, J.: New Approach to Icy Satellite Tidal Response Modeling. American Astronomical Society, DPS meeting, 41, 61.07 (2009)Google Scholar
  9. Castillo-Rogez, J.C., Choukroun, M.: Mars’ low dissipation factor at 11-h. Interpretation from an anelasticity-based dissipation model. American Astronomical Society, DPS Meeting 42, Abstract 51.02. Bulletin of the American Astronomical Society, 42, p. 1069 (2010)Google Scholar
  10. Castillo-Rogez J.C., Efroimsky M., Lainey V.: The tidal history of Iapetus. Dissipative spin dynamics in the light of a refined geophysical model. J. Geophys. Res. Planets 116, E09008 (2011). doi: 10.1029/2010JE003664 CrossRefGoogle Scholar
  11. Churkin, V.A.: The Love Numbers for the Models of Inelastic Earth (in Russian). Preprint No 121. Institute of Applied Astronomy. St. Petersburg, Russia (1998)Google Scholar
  12. Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)ADSCrossRefGoogle Scholar
  13. Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core-mantle friction. Icarus 201, 1–11 (2009)ADSCrossRefGoogle Scholar
  14. Correia, A.C.M., Boué, G., Laskar, J.: Pumping the eccentricity of exoplanets by tidal effect. Astrophys. J. Lett. (2011, submitted) arXiv:1111.5486Google Scholar
  15. Cottrell A.H., Aytekin V.: Andrade’s creep law and the flow of zinc crystalls. Nature 160, 328–329 (1947)ADSCrossRefGoogle Scholar
  16. Dahlen F.A.: The passive influence of the oceans upon rotation of the Earth. Geophys. J. R. Astron. Soc. 46, 363–406 (1976)MATHCrossRefGoogle Scholar
  17. Darwin, G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans. R. Soc. Lond. 170, 447–538 (1879) http://www.jstor.org/view/02610523/ap000081/00a00010/
  18. Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. R. Soc. Lond. 171, 713–891 (1880) http://www.jstor.org/view/02610523/ap000082/00a00200
  19. Defraigne P., Smits I.: Length of day variations due to zonal tides for an inelastic earth in non-hydrostatic equilibrium. Geophys. J. Int. 139, 563–572 (1999)ADSCrossRefGoogle Scholar
  20. Dehant V.: Tidal parameters for an inelastic Earth. Phys. Earth Planet. Interiors 49, 97–116 (1987a)ADSCrossRefGoogle Scholar
  21. Dehant V.: Integration of the gravitational motion equations for an elliptical uniformly rotating Earth with an inelastic mantle. Phys. Earth Planet. Interiors 49, 242–258 (1987b)ADSCrossRefGoogle Scholar
  22. Duval P.: Temporary or permanent creep laws of polycrystalline ice for different stress conditions. Anna. Geophys. 32, 335–350 (1976)Google Scholar
  23. Eanes, R.J.: A study of temporal variations in Earth’s gravitational field using LAGEOS-1 laser ranging observations. PhD thesis, University of Texas at Austin (1995)Google Scholar
  24. Eanes, R.J., Bettadpur, S.V.: Temporal variability of Earth’s gravitational field from laser ranging. In: Rapp, R.H., Cazenave, A. A., Nerem, R.S. (Eds.) Global gravity field and its variations. In: Proceedings of the International Association of Geodesy Symposium No 116 held in Boulder CO in July 1995. IAG Symposium Series. Springer, Berlin, ISBN: 978-3-540-60882-0 (1996)Google Scholar
  25. Efroimsky M., Lainey V.: The physics of bodily tides in terrestrial planets, and the appropriate scales of dynamical evolution. J. Geophys. Res. Planets 112, E12003 (2007). doi: 10.1029/2007JE002908 ADSCrossRefGoogle Scholar
  26. Efroimsky M., Williams J.G.: Tidal torques. A critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009) arXiv:0803.3299MathSciNetADSMATHCrossRefGoogle Scholar
  27. Efroimsky, M.: Tidal dissipation compared to seismic dissipation: in small bodies, earths, and superearths. Astrophys. J. 746, 150 (2012) arXiv:1105.3936. doi: 10.1088/0004-637X/746/2/150
  28. Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)ADSMATHCrossRefGoogle Scholar
  29. Fontaine F.R., Ildefonse B., Bagdassarov N.: Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies. Geophys. J. Int. 163, 1025–1038 (2005)ADSCrossRefGoogle Scholar
  30. Gerstenkorn H.: Über Gezeitenreibung beim Zweikörperproblem. Zeitschrift fü Astrophysik 36, 245– (1955)MathSciNetADSMATHGoogle Scholar
  31. Goldreich P.: On the eccentricity of the satellite orbits in the Solar System. Mon. Notices Royal Astron. Soc. 126, 257–268 (1963)ADSMATHGoogle Scholar
  32. Goldreich P.: Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966)ADSCrossRefGoogle Scholar
  33. Gooding R.H., Wagner C.A.: On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest. Mech. Dyn. Astron. 101, 247–272 (2008)MathSciNetADSCrossRefGoogle Scholar
  34. Gribb T., Cooper R.: Low-frequency shear attenuation in polycrystalline olivine: grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J. Geophys. Res. Solid Earth 103, 27267–27279 (1998)CrossRefGoogle Scholar
  35. Haddad Y.M.: Viscoelasticity of Engineering Materials. Chapman & Hall, London (1995)Google Scholar
  36. Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)ADSMATHGoogle Scholar
  37. Karato S.-I.: Deformation of Earth Materials. An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge, UK (2008)MATHGoogle Scholar
  38. Karato S.-I., Spetzler H.A.: Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys. 28, 399–423 (1990)ADSCrossRefGoogle Scholar
  39. Kaula W.M.: Analysis of gravitational and geometric aspects of geodetic utilisation of satellites. Geophys. J. 5, 104–133 (1961)ADSMATHCrossRefGoogle Scholar
  40. Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–684 (1964)ADSCrossRefGoogle Scholar
  41. Legros, H., Greff, M., Tokieda, T.: Physics inside the Earth. Deformation and Rotation. Lecture Notes in Physics, Vol. 682, pp. 23–66. Springer, Heidelberg (2006)Google Scholar
  42. Love A.E.H.: The yielding of the earth to disturbing forces. Proc. R. Soc. Lond. Ser. A 82, 73–88 (1909)ADSMATHCrossRefGoogle Scholar
  43. Love, A.E.H.: Some problems of geodynamics. Cambridge University Press, London. Reprinted by Dover, New York 1967 (1911)Google Scholar
  44. MacDonald G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)ADSCrossRefGoogle Scholar
  45. Matsuyama I., Bills B.G.: Global contraction of planetary bodies due to despinning. Appl. Mercury Iapetus. Icarus 209, 271–279 (2010)CrossRefGoogle Scholar
  46. McCarthy, C., Goldsby, D.L., Cooper, R.F.: Transient and steady-state creep responses of Ice-I/Magnesium sulfate hydrate eutectic aggregates. In: 38th Lunar and Planetary Science Conference XXXVIII, held on 12–16 March 2007 in League City, TX. LPI Contribution No 1338, p. 2429 (2007)Google Scholar
  47. Mignard F.: The evolution of the Lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)ADSMATHCrossRefGoogle Scholar
  48. Mignard F.: The evolution of the Lunar orbit revisited. II. Moon Planets 23, 185–201 (1980)ADSCrossRefGoogle Scholar
  49. Miguel M.-C., Vespignani A., Zaiser M., Zapperi S.: Dislocation jamming and andrade creep. Phys. Rev. Lett. 89, 165501-1–165501-4 (2002)ADSCrossRefGoogle Scholar
  50. Mitchell B.J.: Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Rev. Geophys. 33, 441–462 (1995)ADSCrossRefGoogle Scholar
  51. Munk, W.H., MacDonald, G.J.F.: The rotation of the earth. A geophysical discussion. Cambridge University Press, 323 pp (1960)Google Scholar
  52. Nakamura Y., Latham G., Lammlein D., Ewing M., Duennebier F., Dorman J.: Deep lunar interior inferred from recent seismic data. Geophys. Res. Lett. 1, 137–140 (1974)ADSCrossRefGoogle Scholar
  53. Nechada H., Helmstetterb A., El Guerjoumaa R., Sornette D.: Andrade and critical time-to-failure laws in fiber-matrix composites. Experiments and model. J. Mech. Phys. solids 53, 1099–1127 (2005)ADSCrossRefGoogle Scholar
  54. Petit, G., Luzum, B. (eds) (2010) IERS conventions 2010. Technical Note No 36. Verlag des Bundesamts für Kartographie und Geodäsie. Frankfurt am Main 2010. http://www.iers.org/TN36/
  55. Rambaux N., Castillo-Rogez J.C., Williams J.G., Karatekin Ö.: The librational response of Enceladus. Geophys. Res. Lett. 37, L04202 (2010). doi: 10.1029/2009GL041465 CrossRefGoogle Scholar
  56. Remus, F., Mathis, S., Zahn, J.-P., Lainey, V.: The elasto-viscous equilibrium tide in exoplanetary systems. In: EPSC-DPS Joint Meeting 2011, Abstract 1372 (2011)Google Scholar
  57. Remus, F., Mathis, S., Zahn, J.-P.: The equilibrium tide in stars and giant planets. I—The coplanar case. Astron. Astrophys. (2012a, submitted)Google Scholar
  58. Remus, F., Mathis, S., Zahn, J.-P., Lainey, V.: Anelastic tidal dissipation in multi-layers planets. Astron. Astrophys. (2012b, submitted)Google Scholar
  59. Rodríguez, A., Ferraz Mello, S., Hussmann, H.: Tidal friction in close-in planets. In: Sun, Y.S., Ferraz-Mello, S., Zhou, J.L. (Eds.) Exoplanets: Detection, Formation and Dynamics. In: Proceedings of the IAU Symposium No 249, pp. 179–186 (2008) doi: 10.1017/S174392130801658X
  60. Sabadini R., Vermeersen B.: Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics. Kluwer, Dordrecht (2004)Google Scholar
  61. Shito A., Karato S.-I., Park J.: Frequency dependence of Q in Earth’s upper mantle, inferred from continuous spectra of body wave. Geophys. Res. Lett. 31(12), L12603 (2004). doi: 10.1029/2004GL019582 ADSCrossRefGoogle Scholar
  62. Singer S.F.: The origin of the moon and geophysical consequences. Geophys. J. R. Astron. Soc. 15, 205–226 (1968)CrossRefGoogle Scholar
  63. Smith M.: The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth. Geophys. J. R. Astron. Soc. 37, 491–526 (1974)MATHCrossRefGoogle Scholar
  64. Stachnik J.C., Abers G.A., Christensen D.H.: Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J. Geophys. Res. Solid Earth 109(B10), B10304 (2004). doi: 10.1029/2004JB003018 ADSCrossRefGoogle Scholar
  65. Tan B.H., Jackson I., Fitz G.J.D.: Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophys. Res. Lett. 24(9), 1055–1058 (1997). doi: 10.1029/97GL00860 ADSCrossRefGoogle Scholar
  66. Taylor P.A., Margot J.-L.: Tidal evolution of close binary asteroid systems. Celest. Mech. Dyn. Astron. 108, 315–338 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  67. Wahr J.M.: A normal mode expansion for the forced response of a rotating Earth. Geophys. J. R. Astron. Soc. 64, 651–675 (1981a)ADSMATHCrossRefGoogle Scholar
  68. Wahr J.M.: Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astron. Soc. 64, 677–703 (1981b)ADSMATHCrossRefGoogle Scholar
  69. Wahr J.M.: The forced nutations of an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astron. Soc. 64, 705–727 (1981c)ADSMATHCrossRefGoogle Scholar
  70. Weertman J., Weertman J.R.: High temperature creep of rock and mantle viscosity. Annu. Rev. Earth Planet. Sci. 3, 293–315 (1975)ADSCrossRefGoogle Scholar
  71. Weber R.C., Lin P.-Y., Garnero E., Williams Q., Lognonné P.: Seismic detection of the Lunar core. Science 331(6015), 309–312 (2011)ADSCrossRefGoogle Scholar
  72. Williams J.G., Boggs D.H., Yoder C.F., Ratcliff J.T., Dickey J.O.: Lunar rotational dissipation in solid-body and molten core. J. Geophys. Res. Planets 106(E11), 27933–27968 (2001). doi: 10.1029/2000JE001396 ADSCrossRefGoogle Scholar
  73. Williams, J.G., Boggs, D.H., Ratcliff, J.T.: Lunar tides, fluid core and core/mantle boundary. In: The 39th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXIX), held on 10–14 March 2008 in League City, TX. LPI Contribution No. 1391, p. 1484 (2008) http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1484.pdf
  74. Williams, J.G., Boggs, D.H.: Lunar Core and Mantle. What does LLR see? In: Schilliak, S. (ed.) Proceedings of the 16th International Workshop on Laser Ranging, held on 12–17 October 2008 in Poznan, Poland, pp. 101–120 (2009) http://cddis.gsfc.nasa.gov/lw16/docs/papers/sci_1_Williams_p.pdf;http://cddis.gsfc.nasa.gov/lw16/docs/papers/proceedings_vol2.pdf
  75. Williams, J.G., Efroimsky, M.: Bodily tides near the 1:1 spin–orbit resonance. Correction to Goldreich’s dynamical model. Celest. Mech. Dyn. Astron. (2012, submitted)Google Scholar
  76. Yoder C.: Tidal rigidity of phobos. Icarus 49, 327–346 (1982)ADSCrossRefGoogle Scholar
  77. Zahn J.-P.: Les marées dans une étoile double serrée. Annales d’Astrophysique 29, 313–330 (1966)ADSGoogle Scholar
  78. Zharkov V.N., Gudkova T.V.: The period and Q of the Chandler wobble of Mars. Planet. Space Sci. 57, 288–295 (2009)ADSCrossRefGoogle Scholar
  79. Zschau, J.: Phase shifts of tidal load deformations of the Earth’s surface due to low-viscosity layers in the interior. In: Bonatz, M. (ed) Proceedings of the 8th International Symposium on Earth Tides, held in Bonn on 19–24 September 1977 (1978)Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  1. 1.US Naval ObservatoryWashingtonUSA

Personalised recommendations