Celestial Mechanics and Dynamical Astronomy

, Volume 112, Issue 1, pp 23–45 | Cite as

Influence of fast interstellar gas flow on the dynamics of dust grains

  • P. Pástor
Original Article


The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit constitute a system of equations that determines the evolution of the particle’s orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar System is also investigated. We consider icy particles with radii from 1 to 10 μm. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 105 to 2 × 106 years, approximately.


Interstellar medium Dust particles Long-term evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alouani-Bibi F., Opher M., Alexashov D., Izmodenov V., Toth G.: Kinetic versus multi-fluid approach for interstellar neutrals in the heliosphere: Exploration of the interstellar magnetic field effects. Astrophys. J. 734, 45 (2011)CrossRefADSGoogle Scholar
  2. Bahcall J.: The luminosity constraint on solar neutrino fluxes. Phys. Rev. C 65, 025801 (2002)CrossRefADSGoogle Scholar
  3. Baines M.J., Williams I.P., Asebiomo A.S.: Resistance to the motion of a small sphere moving through a gas. Mon. Not. R. Astron. Soc. 130, 63–74 (1965)ADSGoogle Scholar
  4. Banaszkiewicz M., Fahr H.J., Scherer K.: Evolution of dust particle orbits under the influence of solar wind outflow asymmetries and the formation of the zodiacal dust cloud. Icarus 107, 358–374 (1994)CrossRefADSGoogle Scholar
  5. Belyaev M., Rafikov R.: The dynamics of dust grains in the outer Solar System. Astrophys. J. 723, 1718–1735 (2010)CrossRefADSGoogle Scholar
  6. Burns J.A., Lamy P.L., Soter S.: Radiation forces on small particles in the Solar System. Icarus 40, 1–48 (1979)CrossRefADSGoogle Scholar
  7. Danby J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, VA, USA (1988)Google Scholar
  8. Debes J.H., Weinberger A.J., Kuchner M.J.: Interstellar medium sculpting of the HD 32297 debris disk. Astrophys. J. 702, 318–326 (2009)CrossRefADSGoogle Scholar
  9. Dermott S.F., Jayaraman S., Xu Y.L., Gustafson B.Å.S., Liou J.C.: A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994)CrossRefADSGoogle Scholar
  10. Fahr H.J.: The interstellar gas flow through the heliospheric interface region. Space Sci. Rev. 78, 199–212 (1996)CrossRefADSGoogle Scholar
  11. Hines D.C., Schneider G., Hollenbach D., Mamajek E.E., Hillenbrand L.A., Metchev S.A., Meyer M.R., Carpenter J.M., Moro-Martín A., Silverstone M.D., Kim J.S., Henning T., Bouwman J., Wolf S.: The Moth: An unusual circumstellar structure associated with HD 61005. Astrophys. J. 671, L165–L168 (2007)CrossRefADSGoogle Scholar
  12. Kimura H., Mann I.: The electric charging of interstellar dust in the solar system and consequences for its dynamics. Astrophys. J. 499, 454–462 (1998)CrossRefADSGoogle Scholar
  13. Klačka, J.: Electromagnetic radiation, motion of a particle and energy–mass relation. arXiv: astro-ph/0807.2915 (2008)Google Scholar
  14. Klačka J., Kómar L., Pástor P., Petržala J.: Solar wind and motion of interplanetary dust grains. In: Johannson, H.E. (eds) Handbook on Solar Wind: Effects, Dynamics and Interactions, pp. 227–273. NOVA Science Publishers, New York (2009a)Google Scholar
  15. Klačka, J., Petržala, J., Pástor, P., Kómar, L.: Solar wind and motion of dust grains. arXiv: astro-ph/0904.2673 (2009b)Google Scholar
  16. Lallement R.: Relations between ISM inside and outside the heliosphere. Space Sci. Rev. 78, 361–374 (1996)CrossRefADSGoogle Scholar
  17. Landgraf M., Augustsson K., Grün E., Gustafson B.Å.S.: Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319–2322 (1999)CrossRefADSGoogle Scholar
  18. Lantoine G., Russell R.P.: Complete closed-form solutions of the Stark problem. Celest. Mech. Dyn. Astron. 109, 333–366 (2011)CrossRefADSMathSciNetGoogle Scholar
  19. Marzari, F., Thébault, P.: On how optical depth tunes the effects of the interstellar medium on debris discs. Mon. Not. R. Astron. Soc. (2011). doi: 10.1111/j.1365-2966.2011.19161.x
  20. Mignard F., Henon M.: About an unsuspected integrable problem. Celest. Mech. Dyn. Astron. 33, 239–250 (1984)zbMATHMathSciNetGoogle Scholar
  21. Möbius E., Bochsler P., Bzowski M., Crew G.B., Funsten H.O., Fuselier S.A., Ghielmetti A., Heirtzler D., Izmodenov V.V., Kubiak M., Kucharek H., Lee M.A., Leonard T., McComas D.J., Petersen L., Saul L., Scheer J.A., Schwadron N., Witte M., Wurz P.: Direct observations of interstellar H, He, and O by the Interstellar Boundary Explorer. Science 326, 969–971 (2009)CrossRefADSGoogle Scholar
  22. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  23. Parker E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)CrossRefADSGoogle Scholar
  24. Pástor, P.: Relation between various formulations of perturbation equations of celestial mechanics. arXiv: astro-ph/0907.4005 (2009)Google Scholar
  25. Pástor P., Klačka J., Kómar L.: Orbital evolution under the action of fast interstellar gas flow. Mon. Not. R. Astron. Soc. 415, 2637–2651 (2011)CrossRefGoogle Scholar
  26. Poynting J.H.: Radiation in the Solar System: its effect on temperature and its pressure on small bodies. Philos. T. R. Soc. Lond. 202, 525–552 (1903)CrossRefADSGoogle Scholar
  27. Reach W.T., Franz B.A., Welland J.L., Hauser M.G., Kelsall T.N., Wright E.L., Rawley G., Stemwedel S.W., Splesman W.J.: Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature 374, 521–523 (1995)CrossRefADSGoogle Scholar
  28. Robertson H.P.: Dynamical effects of radiation in the Solar System. Mon. Not. R. Astron. Soc. 97, 423–438 (1937)zbMATHADSGoogle Scholar
  29. Scherer K.: Drag forces on interplanetary dust grains induced by the interstellar neutral gas. J. Geophys. Res. 105(A5), 10329 (2000)CrossRefADSGoogle Scholar
  30. Wyatt S.P., Whipple F.L.: The Poynting–Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Tekov ObservatoryLeviceSlovak Republic

Personalised recommendations