Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 111, Issue 4, pp 431–447 | Cite as

Dynamics of a particle under the gravitational potential of a massive annulus: properties and equilibrium description

  • Eva TresacoEmail author
  • Antonio Elipe
  • Andrés Riaguas
Original article

Abstract

This paper studies the main features of the dynamics around a massive annular disk. The first part addresses the difficulties finding an appropriated expression of the gravitational potential of a massive disk, which will be used to define the differential equations of motion of our dynamical system. The second part describes the main features of the dynamics with special attention to equilibrium of the system.

Keywords

Potential theory Annular disk Solid disk Composition of annuli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti A., Vidal C.: Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celest. Mech. Dyn. Astron. 98, 75–93 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Arribas M., Elipe A.: Bifurcations and equilibria in the extended N-body ring problem. Mech. Res. Commun. 31, 1–8 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Arribas M., Elipe A., Kalvouridis T., Palacios M.: Homographic solutions in the planar n  +  1 body problem with quasi-homogeneous potentials. Celest. Mech. Dyn. Astron. 99, 1–12 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Arribas M., Elipe A., Palacios M.: Linear stability of ring systems with generalized central forces. Astron. Astrophys. 489, 819–824 (2008)ADSCrossRefGoogle Scholar
  5. Broucke R.A., Elipe A.: The dynamics of orbits in a potential field of a solid circular ring. Regul. Chaotic Dyn. 10, 129–143 (2005)MathSciNetzbMATHCrossRefADSGoogle Scholar
  6. Bulirsch R.: Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7, 78–90 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Byrd P.F., Friedman M.D.: Handbook of elliptic integrals for engineers and scientists. Springer, New York (1971)zbMATHGoogle Scholar
  8. Carlson B.C.: Computing elliptic integrals by duplication. Numer. Math. 33, 1–16 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Elipe A., Arribas M., Kalvouridis T.J.: Periodic solutions in the planar (n  + 1) ring problem with oblateness. J. Guid. Control Dyn. 30, 1640–1648 (2007)CrossRefGoogle Scholar
  10. Elipe A., Tresaco E., Riaguas A.: Gravitational potential of a massive disk. Adv. Astronaut. Sci. 134, 843–860 (2009)Google Scholar
  11. Fukushima T.: Fast computation of Jacobian elliptic functions and incomplete elliptic integrals for constant values of elliptic parameter and elliptic characteristic. Celest. Mech. Dyn. Astron. 105, 245–260 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. Fukushima T.: Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116, 687–719 (2010a)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Fukushima T.: Precise computation of acceleration due to uniform ring or disk. Celest. Mech. Dyn. Astron. 108, 339–356 (2010b)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Kalvouridis T.J.: Periodic solutions in the ring problem. Astrophys. Space Sci. 266, 467–494 (1999)ADSzbMATHCrossRefGoogle Scholar
  15. Kellogg O.D.: Foundations of potential theory. Dover publications, New York (1929)Google Scholar
  16. Kondratyev B.P, Antonov V.A.: On the oscillations and the stability of a uniformly rotating gaseous gravitating disc, including viscosity and heat exchange. Mon. Notice Royal Astron. Soc. 304, 759–766 (1999)ADSCrossRefGoogle Scholar
  17. Kondratyev, B.P.: Potential theory and figures of equilibrium (in Russian). Regular and Chaotic Dynamic Press, Moscow-Izhevsk, The Institute of Computer Science (2003)Google Scholar
  18. Kondratyev B.P.: The potential theory New methods and problems with solutions (in Russian). Mir., Moscow (2007)Google Scholar
  19. Krough F.T., Ng E.W., Snyder W.V.: The gravitational field of a disk. Celest. Mech. 26, 395–405 (1982)ADSCrossRefGoogle Scholar
  20. Lass H., Blitzer L.: The gravitational potential due to uniform disks and rings. Celest. Mech. 30, 225–228 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. MacMilan, W.D.: The theory of the potential. Reprint. [Originally published: McGraw-Hill, New York (1930)]. MacMilan’s Theoretical Mechanics. Dover publications, New York (1958)Google Scholar
  22. Maxwell J.: On the stability of motions of saturn’s rings. Macmillan and Cia., Cambridge (1859)Google Scholar
  23. Scheeres, D.J.: On symmetric central configurations with application to the satellite motion about rings. Ph.D. Thesis, University of Michigan (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centro Universitario de la DefensaZaragozaSpain
  2. 2.Grupo de Mecánica Espacial - IUMAUniversidad de ZaragozaZaragozaSpain
  3. 3.Departamento de Matemática AplicadaUniversidad de ValladolidSoriaSpain

Personalised recommendations