On the detection of (habitable) super-Earths around low-mass stars using Kepler and transit timing variation method

  • Nader HaghighipourEmail author
  • Sabrina Kirste
Original Article


We present the results of an extensive study of the detectability of Earth-sized planets and super-Earths in the habitable zones of cool and low-mass stars using transit timing variation method. We have considered a system consisting of a star, a transiting giant planet, and a terrestrial-class perturber, and calculated TTVs for different values of the parameters of the system. To identify ranges of the parameters for which these variations would be detectable by Kepler, we considered the analysis presented by Ford et al. (Transit timing observations from Kepler: I. Statistical analysis of the first four months. ArXiv:1102.0544, 2011) and assumed that a peak-to-peak variation of 20 s would be within the range of the photometric sensitivity of this telescope. We carried out simulations for resonant and non-resonant orbits, and identified ranges of the semimajor axes and eccentricities of the transiting and perturbing bodies for which an Earth-sized planet or a super-Earth in the habitable zone of a low-mass star would produce such TTVs. Results of our simulations indicate that in general, outer perturbers near first- and second-order resonances show a higher prospect for detection. Inner perturbers are potentially detectable only when near 1:2 and 1:3 mean-motion resonances. For a typical M star with a Jupiter-mass transiting planet, for instance, an Earth-mass perturber in the habitable zone can produce detectable TTVs when the orbit of the transiting planet is between 15 and 80 days. We present the details of our simulations and discuss the implication of the results for the detection of terrestrial planets around different low-mass stars.


Planetary systems: Detection Detection techniques Methods: Numerical simulations TTV Resonant orbits 

Supplementary material

10569_2011_9363_MOESM1_ESM.pdf (3.4 mb)
ESM 1 (PDF 3478 kb)


  1. Agol E., Steffen J., Saari R., Clarkson W.: On detecting terrestrial planets with timing of giant planet transits. MNRAS 359, 567–579 (2005)ADSCrossRefGoogle Scholar
  2. Agol E., Steffen J.H.: A limit on the presence of Earth-mass planets around a Sun-like star. MNRAS 374, 941–948 (2007)ADSCrossRefGoogle Scholar
  3. Batalha N.M. et al.: Selection, prioritization, and characteristics of Kepler target stars. ApJ 713, L109–L114 (2010)ADSCrossRefGoogle Scholar
  4. Bonfils X. et al.: The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581. A&A 443, L15–L18 (2005)ADSCrossRefGoogle Scholar
  5. Borucki W.J. et al.: Characteristics of planetary candidates observed by Kepler, II: Analysis of the first four months of data. ApJ 736, 19–40 (2011)ADSCrossRefGoogle Scholar
  6. Brown T.M., Charbonneau D., Gilliland R.L., Noyes R.W., Burrows A.: Hubble space telescope time-series photometry of the transiting planet of HD 209458. ApJ 552, 699–709 (2001)ADSCrossRefGoogle Scholar
  7. Butler R.P. et al.: A Neptune-mass planet orbiting the nearby M Dwarf GJ 436. ApJ 617, 580–588 (2004)ADSCrossRefGoogle Scholar
  8. Chambers J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999)ADSCrossRefGoogle Scholar
  9. Charbonneau D. et al.: A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009)ADSCrossRefGoogle Scholar
  10. Correia A.C.M. et al.: The HARPS search for southern extrasolar planets. XIX. Characterization and dynamics of the GJ 876 planetary system. A&A 511, A21 (2010)ADSCrossRefGoogle Scholar
  11. Coughlin, J.L., López-Morales, M., Harrison, T.E., Ule, N., Hoffman, D.I.: Low-mass eclipsing binaries in the initial Kepler data release. AJ 141, id.78 (2011)Google Scholar
  12. Deeg H.J., Ocana B., Kozhevnikov V.P., Charbonneau D., O’Donovan F.T., Doyle L.R.: Extrasolar planet detection by binary stellar eclipse timing: evidence for a third body around CM Draconis. A&A 480, 563–571 (2008)ADSCrossRefGoogle Scholar
  13. Doyle, L.R., et al: Detectability of Jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems. In: Rebolo, R., Martin, E.L., Osorio, M.R.Z. (eds.) Brown dwarfs and extrasolar planets. ASP Conference Series 134, 224 (1998)Google Scholar
  14. Doyle, L.R., Deeg, H.-J.: Timing detection of eclipsing binary planets and transiting extrasolar moons. In: Norris, R., Stootman, F. (eds) Bioastronomy 2002: Life Among the Stars, Proceedings of IAU Symposium 213, 80 (2003)Google Scholar
  15. Duric N.: Advanced Astrophysics, pp. 19. Cambridge University Press, Cambridge (2004)Google Scholar
  16. Fogg M.J., Nelson R.P.: Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A 441, 791–806 (2005)ADSCrossRefGoogle Scholar
  17. Fogg M.J., Nelson R.P.: On the possibility of terrestrial planet formation in hot-Jupiter systems. Int. J. Astrobiol. 5, 199–209 (2006)CrossRefGoogle Scholar
  18. Fogg M.J., Nelson R.P.: On the formation of terrestrial planets in hot-Jupiter systems. A&A 461, 1195–1208 (2007a)ADSCrossRefGoogle Scholar
  19. Fogg M.J., Nelson R.P.: The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems. A&A 472, 1003–1015 (2007b)ADSCrossRefGoogle Scholar
  20. Fogg M.J., Nelson R.P.: Terrestrial planet formation in low-eccentricity warm-Jupiter systems. A&A 498, 575–589 (2009)ADSCrossRefGoogle Scholar
  21. Ford E.B., Gaudi B.S.: Observational constraints on Trojans of transiting extrasolar planets. ApJ 652, L137–L140 (2006)ADSCrossRefGoogle Scholar
  22. Ford E.B., Holman M.J.: Using transit timing observations to search for Trojans of transiting extrasolar planets. ApJ 664, L51–L54 (2007)ADSCrossRefGoogle Scholar
  23. Ford, E.B., et al: Transit timing observations from Kepler. I. Statistical analysis of the first four months. ArXiv:1102.0544 (2011)Google Scholar
  24. Gillon M. et al.: Detection of transits of the nearby hot Neptune GJ 436 b. A&A 472, L13–L16 (2007)ADSCrossRefGoogle Scholar
  25. Haghighipour N., Vogt S.S., Butler R.P., Rivera E., Laughlin G., Meschiari S., Henry G.W.: The Lick-Carnegie exoplanet survey: a Saturn-mass planet in the habitable zone of the nearby M4V star HIP 57050. ApJ 715, 271–276 (2010)ADSCrossRefGoogle Scholar
  26. Haghighipour, N., Rastegar S.: Implications of the TTV-detection of close-in terrestrial planets around M stars for their origin and dynamical evolution, In: Bouchy, F., Diaz, R.F., Moutou, C. (eds.) Detection and Dynamics of Transiting Exoplanets, EPJ Web of Conferences Series, 11, Article id:04004 (2011)Google Scholar
  27. Heyl J.S., Gladman B.J.: Using long-term transit timing to detect terrestrial planets. MNRAS 377, 1511–1519 (2007)ADSCrossRefGoogle Scholar
  28. Holman M.J., Murray N.W.: The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005)ADSCrossRefGoogle Scholar
  29. Holman M.J. et al.: Kepler-9: a system of multiple planets transiting a sun-like star confirmed by timing variations. Science 330, 51–54 (2010)ADSCrossRefGoogle Scholar
  30. Jones B.W., Underwood D.R., Sleep P.N.: Prospects for habitable “Earths” in known exoplanetary systems. ApJ 622, 1091–1101 (2005)ADSCrossRefGoogle Scholar
  31. Jones B.W., Sleep P.N., Underwood D.R.: Habitability of known exoplanetary systems based on measured stellar properties. ApJ 649, 1010–1019 (2006)ADSCrossRefGoogle Scholar
  32. Kasting J.F., Whitmire D.P., Reynolds R.T.: Habitable zones around main sequence stars. Icarus 101, 108–128 (1993)ADSCrossRefGoogle Scholar
  33. Kennedy G.M., Kenyon S.J.: Planet formation around stars of various masses: Hot Super-Earths. ApJ 682, 1264–1276 (2008)ADSCrossRefGoogle Scholar
  34. Kipping D.M.: Transit timing effects due to an exomoon. MNRAS 396, 1797–1804 (2009a)ADSCrossRefGoogle Scholar
  35. Kipping D.M.: Transit timing effects due to an exomoon—II. MNRAS 392, 181–189 (2009b)ADSCrossRefGoogle Scholar
  36. Kipping, D., Bakos, G.: An independent analysis of Kepler-4b through Kepler-8b. ApJ 730, id.50 (2011)Google Scholar
  37. Laughlin G., Bodenheimer P., Adams F.C.: The core accretion model predicts few Jovian-mass planets orbiting red dwarfs. ApJ 612, L73–L76 (2004)ADSCrossRefGoogle Scholar
  38. Lissauer J.J. et al.: A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011)ADSCrossRefGoogle Scholar
  39. Mandell A.M., Raymond S.N., Sigurdsson S.: Formation of Earth-like planets during and after giant planet migration. ApJ 660, 823–844 (2007)ADSCrossRefGoogle Scholar
  40. Mayor M. et al.: The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A 507, 487–494 (2009)ADSCrossRefGoogle Scholar
  41. Menou K., Tabachnik S.: Dynamical habitability of known extrasolar planetary systems. ApJ 583, 473–488 (2003)ADSCrossRefGoogle Scholar
  42. Meschiari S., Laughlin G.P.: Systemic: a testbed for characterizing the detection of extrasolar planets. II. Numerical approaches to the transit timing inverse problem. ApJ 718, 543–550 (2010)ADSCrossRefGoogle Scholar
  43. Miralda-Escudé J.: Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect Earth-mass planets. ApJ 564, 1019–1023 (2002)ADSCrossRefGoogle Scholar
  44. Nesvorný D., Morbidelli A.: Mass and orbit determination from transit timing variations of exoplanets. ApJ 688, 636–646 (2008)ADSCrossRefGoogle Scholar
  45. Nesvorný D.: Transit timing variations for eccentric and inclined exoplanets. ApJ 701, 1116–1122 (2009)ADSCrossRefGoogle Scholar
  46. Nesvorný D., Beaugé C.: Fast inversion method for determination of planetary parameters from transit timing variations. ApJ 709, L44–L48 (2010)ADSCrossRefGoogle Scholar
  47. Oshagh, M., Haghighipour, N. and Santon, N.: A survey of M stars in the field of view of Kepler space telescope. In: Proceedings of the IAU Symposium No. 276. ArXiv:1012.2234 (2010, to appear)Google Scholar
  48. Pan M., Sari R.: A generalization of the Lagrangian points: studies of resonance for highly eccentric orbits. AJ 128, 1418–1429 (2004)ADSCrossRefGoogle Scholar
  49. Payne M.J., Ford E.B., Veras D.: Transit timing variations for inclined and retrograde exoplanetary systems. ApJ 712, L86–L92 (2010)ADSCrossRefGoogle Scholar
  50. Raymond S.N., Mandell A.M., Sigurdsson S.: Exotic earths: forming habitable worlds with giant planet migration. Science 313, 1413–1416 (2006)ADSCrossRefGoogle Scholar
  51. Rivera E.J. et al.: A \({\sim 7.5 {M_\oplus} }\) planet orbiting the nearby star GJ 876. ApJ 634, 625–640 (2005)ADSCrossRefGoogle Scholar
  52. Rivera E.J., Laughlin G., Butler R.P., Vogt S.S., Haghighipour N., Mechiari S.: The Lick-Carnegie exoplanet survey: a Uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration. ApJ 719, 890–899 (2010)ADSCrossRefGoogle Scholar
  53. Saha P., Tremaine S.: Symplectic integrators for solar system dynamics. AJ 104, 1633–1640 (1992)ADSCrossRefGoogle Scholar
  54. Sartoretti P., Schneider J.: On the detection of satellites of extrasolar planets with the method of transits. A&A 134, 553–560 (1999)ADSCrossRefGoogle Scholar
  55. Schneider J., Chevreton M.: The photometric search for earth-sized extrasolar planets by occultation in binary systems. A&A 232, 251–257 (1990)ADSGoogle Scholar
  56. Schneider J., Doyle L.R.: Ground-based detection of terrestrial extrasolar planets by photometry: the case for CM Draconis. EM&P 71, 153–173 (1995)ADSGoogle Scholar
  57. Schneider, J.: Multi-planet system detection by transits. In: Combes, F., Barret, D., Contini, T., Pagani, L. (eds) SF2A-2003, EdP-Sciences, Conference Series, p. 149 (2003)Google Scholar
  58. Schwarz R., Haghighipour N., Eggl S., Pilat-Lohinger E., Funk B.: Prospects of the detection of circumbinary planets with Kepler and CoRoT using the variations of eclipse timing. MNRAS 414, 2763–2770 (2011)ADSCrossRefGoogle Scholar
  59. Simon A., Szatmáry K., Szabó Gy.M.: Determination of the size, mass, and density of “exomoons” from photometric transit timing variations. A&A 470, 727–731 (2007)ADSCrossRefGoogle Scholar
  60. Steffen J.H., Agol E.: An analysis of the transit times of TrES-1b. MNRAS 364, L96–L100 (2005)ADSGoogle Scholar
  61. Steffen J.H. et al.: Five Kepler target stars that show multiple transiting exoplanet candidates. ApJ 725, 1226–1241 (2010)ADSCrossRefGoogle Scholar
  62. Sybilski P., Konacki M., Kozlowski S.: Detecting circumbinary planets using eclipse timing of binary stars—numerical simulations. MNRAS 405, 657–665 (2010)ADSGoogle Scholar
  63. Udry S. et al.: The HARPS search for southern extrasolar planets. XI. Super-Earths (5 and 8 \({M_\oplus}\)) in a 3-planet system. A&A 469, L43–L47 (2007)ADSCrossRefGoogle Scholar
  64. Veras, D., Ford, E.B., Payne, M.J.: Quantifying the challenges of detecting unseen planetary companions with transit timing variations. ApJ 727, article id.74 (2011)Google Scholar
  65. Vogt S.S., Butler R.P., Rivera E.J., Haghighipour N., Henry G.W.: The Lick-Carnegie Exoplanet Survey: a 3.1 \({M_\oplus}\) planets in the habitable zone of the nearby M3V star Gliese 581. ApJ 723, 954–965 (2010)ADSCrossRefGoogle Scholar
  66. Zhou J-L., Aarseth S.J., Lin D.N.C., Nagasawa M.: Origin and ubiquity of short-period Earth-like planets: evidence for the sequential accretion theory of planet formation. ApJ 631, L85–L88 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Astronomy and NASA Astrobiology InstituteUniversity of HawaiiHonoluluUSA
  2. 2.Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität BerlinBerlinGermany

Personalised recommendations