The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy

  • Brian Luzum
  • Nicole Capitaine
  • Agnès Fienga
  • William Folkner
  • Toshio Fukushima
  • James Hilton
  • Catherine Hohenkerk
  • George Krasinsky
  • Gérard Petit
  • Elena Pitjeva
  • Michael Soffel
  • Patrick Wallace
Open Access
SPECIAL REPORT

Abstract

In the 2006–2009 triennium, the International Astronomical Union (IAU) Working Group on Numerical Standards for Fundamental Astronomy determined a list of Current Best Estimates (CBEs). The IAU 2009 Resolution B2 adopted these CBEs as the IAU (2009) System of Astronomical Constants. Additional work continues to define the process of updating the CBEs and creating a standard electronic document.

Keywords

Numerical standards Fundamental Astronomy Fundamental constants 

References

  1. Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager G.B.: The mass gravity field and ephemeris of Mercury. Icarus 71, 337–349 (1987)ADSCrossRefGoogle Scholar
  2. Bourda G., Capitaine N.: Precession, nutation and space geodetic determination of the Earth’s variable gravity field. Astron. Astrophys. 428, 691–702 (2004)ADSMATHCrossRefGoogle Scholar
  3. Brown M.E., Schaller E.L.: The Mass of Dwarf Planet Eris. Science 316, 1585 (2007). doi:10.1126/science.1139415 ADSCrossRefGoogle Scholar
  4. Burša M., Kouba J., Raděj K., True S.A., Vatrt V., Vojtišková M.: Mean earth’s equipotential surface from Topex/Poseidon altimetry. Studia Geoph. Et Geod. 42, 459–466 (1998). doi:10.1023/A:1023356803773 CrossRefGoogle Scholar
  5. Capitaine N., Guinot B., McCarthy D.D.: Definition of the Celestial Ephemeris Origin and of UT1 in the International Celestial Reference Frame. Astron. Astrophys. 355, 398–405 (2000)ADSGoogle Scholar
  6. Capitaine N., Wallace P., Chapront J.: Expressions for IAU 2000 precession quantities. Astron. Astrophys. 412, 567–586 (2003)ADSCrossRefGoogle Scholar
  7. Capitaine N., Wallace P.T., Chapront J.: Improvement of the IAU 2000 precession model. Astron. Astrophys. 432, 355–367 (2005)ADSCrossRefGoogle Scholar
  8. Chapront J., Chapront-Touzé M., Francou G.: A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astron. Astrophys. 387, 700–709 (2002). doi:10.1051/0004-6361:20020420 ADSCrossRefGoogle Scholar
  9. Cheng M., Tapley B.D.: Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004). doi:10.1029/2004JB003028 CrossRefGoogle Scholar
  10. Fairhead L., Bretagnon P.: An Analytical Formula for the Time Transformation TB–TT. Astron. Astrophys. 229, 240–247 (1990)ADSGoogle Scholar
  11. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and Lunar Ephemeris DE 421. Memorandum IOM 343R-08-003, (2008)Google Scholar
  12. Fukushima, T.: Report on Astronomical Constants. In: Johnston, K.J., McCarthy, D.D., Luzum, B.J., Kaplan, G.H. (eds.) Proceedings of IAU Colloquium 180, pp. 417–427. (2000)Google Scholar
  13. Fukushima T.: Report on Astronomical Constants. In: Rickman, H. (eds) Highlights of Astronomy, Vol. 12, pp. 107–112. International Astronomical Union, 2000, Paris (2002)Google Scholar
  14. Gauss, C.F.: Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic Sections. p. 2 Little, Brown, and Company, Boston (1857)Google Scholar
  15. Groten, E.: Geodesists Handbook 2000, part 4, http://www.gfy.ku.dk/~iag/HB2000/part4/groten.htm . See also Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics. J. Geod. 74, 134–140 (2000)Google Scholar
  16. Hilton J.L., Capitaine N., Chapront J., Ferrandiz J.M., Fienga A., Fukushima T., Getino J., Mathews P., Simon J.-L., Soffel M., Vondrak J., Wallace P., Williams J.: Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic. Celest. Mech. Dyn. Astron. 94, 351–367 (2006). doi:10.1007/s10569-006-0001-2 ADSMATHCrossRefGoogle Scholar
  17. IERS Conventions, McCarthy, D.D., Petit, G.: IERS Technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 127 pp. (2003)Google Scholar
  18. International Astronomical Union (IAU). In: Proceedings of the Sixteenth General Assembly. Transactions of the IAU, XVIB, p. 31, pp. 52–66 (1976)Google Scholar
  19. International Astronomical Union (IAU): Proceedings of the Twenty-Fourth General Assembly. Transactions of the IAU, XXIVB, pp. 34–57 (2000)Google Scholar
  20. International Astronomical Union (IAU), Proceedings of the Twenty-Sixth General Assembly. Transactions of the IAU, XXVIB (2006)Google Scholar
  21. Irwin A., Fukushima T.: A numerical time ephemeris of the Earth. Astron. Astrophys. 348, 642–652 (1999)ADSGoogle Scholar
  22. Jacobson R.A.: The Orbits of the Neptunian Satellites and the Orientation of the Pole of Neptune. Astron. J. 137, 4322–4329 (2009). doi:10.1088/0004-6256/137/4322 ADSCrossRefGoogle Scholar
  23. Jacobson R.A., Campbell J.K., Taylor A.H.: The masses of Uranus and its Major Satellites from Voyager Tracking Data and Earth-based Uranian Satellite Data. Astron. J. 103(6), 2068–2078 (1992)ADSCrossRefGoogle Scholar
  24. Jacobson R.A., Haw R.J., McElrath T.P., Antreasian P.G.: A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System. J. Astronaut. Sci. 48(4), 495–516 (2000)Google Scholar
  25. Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Pelletier F.J., Owen W.M. Jr, Roth D.C., Stauch J.R.: The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data. Astron. J. 132(6), 2520–2526 (2006)ADSCrossRefGoogle Scholar
  26. Klioner, S.A., Capitaine, N., Folkner, W., Guinot, B., Huang, T.-Y., Kopeikin, S., Pitjeva, E., Seidelmann, P. K., Soffel, M.: Units of relativistic time scales and associated quantities. In: Klioner, S., Seidelmann, P.K., Soffel M. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union Symposium No. 261, 2009, Cambridge University Press, pp. 79–84. (2010) doi:10.1017/S1743921309990184
  27. Konopliv A.S., Banerdt W.B., Sjogren W.L.: Venus Gravity: 180th Degree and Order Model. Icarus 139, 3–18 (1999)ADSCrossRefGoogle Scholar
  28. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.N., Sjogren W.L.: A global solution for the Mars static and seasonal gravity, Mars Orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1), 23–50 (2006)ADSCrossRefGoogle Scholar
  29. Mohr P.J., Taylor B.N.: CODATA recommended values of the fundamental physical constants: 1998. Rev. Mod. Phys. 72, 351–495 (2000)ADSMATHCrossRefGoogle Scholar
  30. Mohr P.J., Taylor B.N., Newell D.B.: The CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, 633–730 (2008)ADSCrossRefGoogle Scholar
  31. Petit, G.: Report of the BIPM/IAU joint committee on relativity for space-time reference systems and metrology. In: Johnston, K.J., McCarthy, D.D., Luzum, B.J., Kaplan, G.H. (eds.) Proceedings of IAU Colloquium 180, U.S. Naval Observatory, Washington, D.C. pp. 275–282, (2000)Google Scholar
  32. Pitjeva E.V., Standish E.M.: Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit. Celest. Mech. Dyn. Astron. 103, 365–372 (2009). doi:10.1007/s10569-009-9203-8 ADSCrossRefMATHGoogle Scholar
  33. Ries J.C., Eanes R.J., Shum C.K., Watkins M.M.: Progress in the determination of the gravitational coefficient of the Earth. Geophys. Res. Lett. 19(6), 529–531 (1992)ADSCrossRefGoogle Scholar
  34. Standish E.M.: Report of the IAU WGAS Sub-group on Numerical Standards. In: Appenzeller, I. (eds) Highlights in Astronomy, Vol. 10, pp. 180–184. International Astronomical Union, 1994, Paris (1995)CrossRefGoogle Scholar
  35. Tholen D.J., Buie M.W., Grundy W.: Masses of Nix and Hydra. Astron. J. 135(3), 777–784 (2008)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Brian Luzum
    • 1
  • Nicole Capitaine
    • 2
  • Agnès Fienga
    • 3
  • William Folkner
    • 4
  • Toshio Fukushima
    • 5
  • James Hilton
    • 1
  • Catherine Hohenkerk
    • 6
  • George Krasinsky
    • 7
  • Gérard Petit
    • 8
  • Elena Pitjeva
    • 7
  • Michael Soffel
    • 9
  • Patrick Wallace
    • 10
  1. 1.U.S. Naval ObservatoryWashingtonUSA
  2. 2.SYRTE, Observatoire de ParisCNRS, UPMCParisFrance
  3. 3.Institut UTINAM, Université de Franche-Comté, CNRS-UMR 6123BesançonFrance
  4. 4.Jet Propulsion LaboratoryCAUSA
  5. 5.National Astronomical ObservatoryTokyoJapan
  6. 6.HM Nautical Almanac OfficeTauntonUK
  7. 7.Institute of Applied AstronomyRASSt. PetersburgRussia
  8. 8.Bureau International des Poids et MesuresSèvresFrance
  9. 9.Dresden Technical UniversityDresdenGermany
  10. 10.Rutherford Appleton LaboratoryChiltonUK

Personalised recommendations