Tidal interactions in multi-planet systems

  • J. C. B. PapaloizouEmail author
Original Article


We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ 581 and HD 10180 systems. We also estimate the tidal dissipation rates through effective quality factors that could result in evolution to observed period ratios within the lifetimes of the systems. Thus the survival of, or degree of departure from, close commensurabilities in observed systems may be indicative of the effectiveness of tidal disipation, a feature which in turn may be related to the internal structure of the planets involved.


Planet formation Planetary systems Resonances Tidal interactions Circularization GJ 581 HD 10180 


  1. Barnes R., Jackson B., Raymond S.N., West A.A., Greenberg R.: The HD 40307 planetary system: super-earths or mini-Neptunes?. Astrophys. J. 695, 1006–1011 (2009)ADSCrossRefGoogle Scholar
  2. Bonfils X., Forveille T., Delfosse X. et al.: The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581. Astron. Astrophys. 443, L15–L18 (2005)ADSCrossRefGoogle Scholar
  3. Brouwer D., Clemence G.M.: Methods of Celestial Mechanics, pp. 416–421. Academic Press, New York (1961)Google Scholar
  4. Brunini A., Cionco R.G.: The origin and nature of Neptune-like planets orbiting close to solar type stars. Icarus 177, 264–268 (2005)ADSCrossRefGoogle Scholar
  5. Goldreich P., Soter S.: Q in the Solar System. Icarus 5, 375–389 (1966)ADSCrossRefGoogle Scholar
  6. Lovis, C., Sgransan, D., Mayor, M., et al.: The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. (2010) (in press)Google Scholar
  7. Lynden-Bell D., Pringle J.E.: The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974)ADSGoogle Scholar
  8. Mayor M., Bonfils X., Forveille T. et al.: The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. Astron. Astrophys. 507, 487–494 (2009a)ADSCrossRefGoogle Scholar
  9. Mayor M., Udry S., Lovis C. et al.: The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 \({{M}_{\oplus}}\)). Astron. Astrophys. 493, 639–644 (2009b)ADSCrossRefGoogle Scholar
  10. Murray C.D., Dermott S.F.: Solar System Dynamics, pp. 254–255. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  11. Papaloizou J.C.B.: Disc-planet interactions: migration and resonances in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 87, 53–83 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. Papaloizou J.C.B., Larwood J.D.: On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Mon. Not. R. Astron. Soc. 315, 823–833 (2000)ADSCrossRefGoogle Scholar
  13. Papaloizou J.C.B., Szuszkiewicz E.: On the migration-induced resonances in a system of two planets with masses in the Earth mass range. Mon. Not. R. Astron. Soc. 363, 153–176 (2005)ADSCrossRefGoogle Scholar
  14. Papaloizou J.C.B., Szuszkiewicz E.: Conditions for the occurrence of mean-motion resonances in a low mass planetary system. EAS Publ. Ser. 42, 333–343 (2010)CrossRefGoogle Scholar
  15. Papaloizou J.C.B., Terquem C.: Dynamical relaxation and massive extrasolar planets. Mon. Not. R. Astron. Soc. 325, 221–230 (2001)ADSCrossRefGoogle Scholar
  16. Papaloizou J.C.B., Terquem C.: On the dynamics of multiple systems of hot super-Earths and Neptunes: tidal circularization, resonance and the HD 40307 system. Mon. Not. R. Astron. Soc. 405, 573–592 (2010)ADSGoogle Scholar
  17. Paardekooper S.-J., Mellema G.: Halting type I planet migration in non-isothermal disks. Astron. Astrophys. 459, L17–L20 (2006)ADSCrossRefGoogle Scholar
  18. Paardekooper S.-J., Papaloizou J.C.B.: On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. Astron. Astrophys. 485, 877–895 (2008)ADSCrossRefzbMATHGoogle Scholar
  19. Paardekooper S.-J., Papaloizou J.C.B.: On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. Mon. Not. R. Astron. Soc. 394, 2283–2296 (2009)ADSCrossRefGoogle Scholar
  20. Raymond S.N., Barnes R., Mandell A.M.: Observable consequences of planet formation models in systems with close-in terrestrial planets. Mon. Not. R. Astron. Soc. 384, 663–674 (2008)ADSCrossRefGoogle Scholar
  21. Schlaufman K.C., Lin D.N.C., Ida S.: The signature of the ice line and modest Type I migration in the observed exoplanet mass-semimajor axis distribution. Astrophys. J. 691, 1322–1327 (2009)ADSCrossRefGoogle Scholar
  22. Sinclair A.T.: The orbital resonance amongst the Galilean satellites of Jupiter. Mon. Not. R. Astron. Soc. 171, 59–72 (1975)ADSzbMATHGoogle Scholar
  23. Tanaka H., Takeuchi T., Ward W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)ADSCrossRefGoogle Scholar
  24. Terquem C., Papaloizou J.C.B.: Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007)ADSCrossRefGoogle Scholar
  25. Udry S., Bonfils X., Delfosse X. et al.: The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 \({{M}_{\oplus}}\)) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)ADSCrossRefGoogle Scholar
  26. Vogt S.S., Butler R.P., Rivera E.J. et al.: The Lick-Carnegie exoplanet survey: a 3.1 \({{M} _{\oplus}}\) Planet in the Habitable Zone of the Nearby M3V Star Gliese 581. Astrophys. J. 723, 954–965 (2010)ADSCrossRefGoogle Scholar
  27. Ward W.R.: Protoplanet migration by Nebula tides. Icarus 126, 261–281 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesCambridgeUK

Personalised recommendations