Celestial Mechanics and Dynamical Astronomy

, Volume 109, Issue 4, pp 321–332 | Cite as

Finiteness of spatial central configurations in the five-body problem

Open Access
Original Article

Abstract

We strengthen a generic finiteness result due to Moeckel by showing that the number of spatial central configurations of the Newtonian five-body problem with positive masses is finite, apart from some explicitly given special cases of mass values.

Keywords

Central configurations n-Body problem Tropical geometry Polyhedral fan Albouy–Chenciner equations 

References

  1. Albouy A., Chenciner A.: Le problème des n corps et les distances mutuelles. Inv. Math. 131, 151–184 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  2. Albouy, A., Kaloshin, V.: Personal communication (2010)Google Scholar
  3. Bernstein D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)CrossRefMATHGoogle Scholar
  4. Bieri R., Groves J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984)MathSciNetMATHGoogle Scholar
  5. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3-1-1—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2010)
  6. Dziobek O.: Über einen merkwürdigen fall des vielkörperproblems. Astron. Nach. 152, 152 (1900)CrossRefGoogle Scholar
  7. Euler L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi. Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)Google Scholar
  8. Hampton M., Moeckel R.: Finiteness of relative equilibria of the four-body problem. Inv. Math. 163, 289–312 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  9. Hept K., Theobald T.: Tropical bases by regular projections. Proc. Am. Math. Soc. 137, 2233–2241 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. Jensen, A.N.: Algorithmic Aspects of Gröbner Fans and Tropical Varieties. PhD thesis, Department of Mathematical Sciences, University of Aarhus, Denmark (2007)Google Scholar
  11. Jensen, A.N.: Gfan, a software system for Gröbner fans. http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html (2009)
  12. Khovanskii A.G.: Newton polyhedra and toric varieties. Funct. Anal. Appl. 11, 289–296 (1977)CrossRefMATHGoogle Scholar
  13. Kushnirenko A.G.: Newton polytopes and the bézout theorem. Funct. Anal. Appl. 10, 233–235 (1976)CrossRefMATHGoogle Scholar
  14. Lagrange, J.L.: Essai sur le problème des trois corps. Oeuvres 6 (1772)Google Scholar
  15. Lee T.L., Santoprete M.: Central configurations of the five-body problem with equal masses. Celest. Mech. Dyn. Astron. 104, 369–381 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  16. Moeckel R.: On central configurations. Math. Zeit. 205, 499–517 (1990)MathSciNetCrossRefMATHGoogle Scholar
  17. Moeckel R.: Generic finiteness for Dziobek configurations. Trans. Am. Math. Soc. 353, 4673–4686 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. Moulton F.R.: The straight line solutions of the problem of n bodies. Ann. Math. 12, 1–17 (1910)MathSciNetCrossRefMATHGoogle Scholar
  19. Newton I.: Philosophi Naturalis Principia Mathematica. Royal Society, London, UK (1687)Google Scholar
  20. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: Sum of squares optimization toolbox for MATLAB (2004)Google Scholar
  21. Roberts G.: A continuum of relative equilibria in the five-body problem. Phys. D 127, 141–145 (1999)MathSciNetCrossRefMATHGoogle Scholar
  22. Roberts, G.: Personal communication (2009)Google Scholar
  23. Speyer D., Sturmfels B.: The tropical grassmannian. Adv. Geom. 4, 389–411 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. Stein, W., et al.: Sage Mathematics Software (Version 4.5.2). The Sage Development Team http://www.sagemath.org (2010)
  25. Stengle G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)MathSciNetCrossRefGoogle Scholar
  26. Sturmfels B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence, R.I. (1996)MATHGoogle Scholar
  27. Sturmfels, B.: Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol 97. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2002)Google Scholar
  28. Witty, C.: Isolate Real Roots of Real Polynomials, http://www.sagemath.org/doc/reference/sage/rings/polynomial/real_roots.html (2009)
  29. Zeigler G.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MinnesotaDuluthUSA
  2. 2.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations