Celestial Mechanics and Dynamical Astronomy

, Volume 109, Issue 3, pp 241–264 | Cite as

Optimal transfers between unstable periodic orbits using invariant manifolds

  • Kathryn E. Davis
  • Rodney L. Anderson
  • Daniel J. Scheeres
  • George H. Born
Original article


This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun–Earth, Earth–Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.


Three-body problem Unstable periodic orbits Invariant manifolds Dynamical systems theory Transfer trajectories Primer vector theory Libration point orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson R.L., Lo M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control Dyn. 32(6), 1921–1930 (2009)CrossRefGoogle Scholar
  2. Bray, T.A., Goudas, C.L.: Doubly-symmetric orbits about the collinear Lagrange points. Astron. J. 72(2) March (1967)Google Scholar
  3. Breakwell J.V., Brown J.V.: The Halo family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem. Celest. Mech. 20, 389–404 (1979)MATHCrossRefADSGoogle Scholar
  4. Broschart, S., Chung, M., Hatch, S., Ma, J., Sweetser, T., Weinstein-Weiss, S., Angelopoulos, V.: Preliminary trajectory design for the Artemis Lunar mission. In: Astrodynamics Specialist Conference Number AAS 09-382, Pittsburgh, Pennsylvania. August 9–13 (2009)Google Scholar
  5. Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth-Moon masses. Technical Report 32-1168, Jet Propulsion Laboratory. Cal. Tech. (1968)Google Scholar
  6. D’Amario, L.A.: Minimum impulse three-body trajectories. Technical Report T-593, Massachusetts Institute of Technology. June (1973)Google Scholar
  7. Darwin G.H.: Periodic orbits. Acta Math. 21, 99–242 (1897)CrossRefMathSciNetMATHGoogle Scholar
  8. Davis, K.E.: Locally Optimal Transfer Trajectories Between Libration Point Orbits Using Invariant Manifolds. Ph.D. thesis, University of Colorado, Boulder, Colorado (2009)Google Scholar
  9. Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107, 471–485 (2010)Google Scholar
  10. Farquhar R.W., Kamel A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)MATHCrossRefADSGoogle Scholar
  11. Folta, D., Lowe, J.: Formation flying of a telescope/occulter system with large separations in an L2 libration orbit. In: 59th International Astronautical Congress. Number IAC-08-C1.6.2, Glasgow, Scotland, Sept 30–Oct 3 (2008)Google Scholar
  12. Gardner, J.P.: The James Webb space telescope. In: Large Telescopes and Virtual Observatory: Visions for the Future. 25th Meeting of the IAU, Sydney, Australia July (2003)Google Scholar
  13. Gómez G., Jorba A., Masdemont J., Simó C.: Study of the transfer between halo orbits. Acta Astronaut 43, 493–520 (1998)CrossRefGoogle Scholar
  14. Gómez, G., Masdemont, J.: Some Zero Cost Transfers Between Libration Point Orbits. In: AAS/AIAA Spaceflight Mechanics Meeting. Number AAS 00-177, Clearwater, Florida January (2000)Google Scholar
  15. Grebow, D., Ozimek, M., Howell, K., Folta, D.: Multi-body orbit architectures for lunar South Pole coverage. In: AIAA/AAS Astrodynamics Specialist Meeting. Number AAS 06-179, Tampa, Florida 22–26 January (2006)Google Scholar
  16. Hamera, K., Mosher, T., Gefreh, M., Paul, R., Slavkin, L., Trojan, J.: An evolvable lunar communication and navigation constellation concept. In: IEEE Aerospace Conference. Number IEEE 1491, Big Sky, Montana 28 April–1 May (2008)Google Scholar
  17. Hénon M.: New families of periodic Orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003)MATHCrossRefADSGoogle Scholar
  18. Hiday, L.A.: Optimal Transfers Between Libration Point Orbits in the Elliptic Restricted Three-Body Problem. Ph.D. thesis Purdue University, West Lafayette, Indiana (1992)Google Scholar
  19. Hiday-Johnston L.A., Howell K.C.: Transfers between libration point orbits in the elliptic restricted problem. Celest. Mech. Dyn. Astron. 58, 317–337 (1994)CrossRefADSGoogle Scholar
  20. Hiday-Johnston L.A., Howell K.C.: Impulsive time-free transfers between Halo orbits. Celest. Mech. Dyn. Astron. 64, 281–303 (1996)MATHCrossRefADSGoogle Scholar
  21. Hill G.W.: Review of Darwin’s Periodic Orbits. Astron. J. 18(423), 120 (1898)CrossRefADSGoogle Scholar
  22. Hill, K., Parker, J.S., Born, G.H., Demandante, N.: A lunar L2 navigation, communication, and gravity mission. In: AIAA/AAS Astrodynamics Specialist Conference. Number AIAA 2006-6662, Keystone, Colorado August (2006)Google Scholar
  23. Howell K.C.: Three-dimensional, periodic, ‘Halo’ orbits. Celest. Mech. 32(1), 53–71 (1984)MATHCrossRefMathSciNetADSGoogle Scholar
  24. Howell K.C., Hiday-Johnston L.A.: Time-free transfers between libration point orbits in the elliptic restricted problem. Acta Astron. 32, 245–254 (1994)CrossRefGoogle Scholar
  25. Jezewski, D.J.: Primer vector theory and applications. Technical Report TR R-454, Lyndon B. Johnson Space Center, Houston, TX (1975)Google Scholar
  26. Jezewski D.J., Rozendaal H.: An efficient method for calculating optimal free-space N-impulse trajectories. AIAA Stud J 6(11), 2160–2165 (1968)MATHCrossRefADSGoogle Scholar
  27. Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)MATHCrossRefMathSciNetADSGoogle Scholar
  28. Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)MathSciNetCrossRefGoogle Scholar
  29. Lawden D.F.: Optimal trajectories for space navigation. Butterworths & Co Publishers, London (1963)MATHGoogle Scholar
  30. Lindegren, L., Babusiaux, C., Bailer-Jones, C., Bastian, U., Brown, A.G.A., Cropper, M., Høg, E., Jordi, C., Katz, D., van Leeuwen, F., Luri, X., Mignard, F., de Bruijne, J.H.J., Prusti, T.: The Gaia Mission: science, organization and present status. Proc. Int. Astronom. Union. 3(Symposium S248), 217–223 (2007)Google Scholar
  31. Lion P., Handelsman M.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968)MATHCrossRefADSGoogle Scholar
  32. Lo, M.W., Parker, J.S.: Chaining simple periodic three-body orbits. In: AAS/AIAA Astrodynamics Specialist Conference. Number AAS 2005-380, Lake Tahoe, California, August 7–11 (2005)Google Scholar
  33. Lo M.W., Williams B.G., Bollman W.E., Han D.S., Hahn Y.S., Bell J.L., Hirst E.A., Corwin R.A., Hong P.E., Howell K.C., Barden B., Wilson R.: Genesis mission design. J. Astron. Sci. 49(1), 169–184 (2001)Google Scholar
  34. Mingotti G., Topputo F., Bernelli-Zazzera F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009)CrossRefMathSciNetADSMATHGoogle Scholar
  35. Moulton F.R.: Periodic Orbits, pp. 161. Carnegie Institute of Washington Publications, Washington, DC (1920)MATHGoogle Scholar
  36. Parker J.S., Born G.H.: Modeling a low-energy ballistic lunar transfer using dynamical systems theory. J. Spacecr. Rockets 45(6), 1269–1281 (2008)CrossRefADSGoogle Scholar
  37. Parker, J.S., Davis, K.E., Born, G.H.: Chaining periodic three-body orbits in the Earth-Moon system. Acta Astron. (2010)Google Scholar
  38. Richardson, D.L., Cary, N.D.: A uniformly valid solution for motion of the interior libration point for the perturbed elliptic-restricted problem. In: AIAA/AAS Astrodynamics Specialist Conference. Number AIAA 75-021 July (1975)Google Scholar
  39. Russell R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astron. Sci. 54(2), 199–226 (2006)Google Scholar
  40. Strömgren, E.: Connaissance actuelle des orbites dans le problème des trios corps. Copenhagen Observatory Publications (100), also Bull. Astron. 9(87) (1935)Google Scholar
  41. Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  42. Wilson, R.: Derivation of differential correctors used in GENESIS mission design. Technical Report JPL IOM 312.I-03-002, Jet Propulsion Laboratory (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kathryn E. Davis
    • 1
  • Rodney L. Anderson
    • 1
  • Daniel J. Scheeres
    • 1
  • George H. Born
    • 1
  1. 1.Colorado Center for Astrodynamics ResearchUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations