Celestial Mechanics and Dynamical Astronomy

, Volume 108, Issue 1, pp 23–34 | Cite as

Hoag’s object, remnant of a vanished bar?

  • Tarsh Freeman
  • Sethanne Howard
  • Gene G. ByrdEmail author
Original Article


The beautiful ringed Hoag’s object, named after its discoverer, is an interesting galaxy. Because of the roundness of its ring-like structure, it has been proposed to be a collisional ring galaxy; however, there is no obvious nearby culprit galaxy that could have collided with it. Considering an alternative, much gentler hypothesis, we study the development of the observed structure via a turning, bar perturbation in the disk potential. However, there is currently no obvious bar present, and rings produced by bars are typically oval. On the basis of much recent work improving our understanding of bar evolution, we assume the bar grows and then vanishes. In simulations of a disk of particles, under such a bar turning in the disk plane, we obtain a bulge core, empty void, and circular ring in the disk that mimic the observations of Hoag’s object. We conclude the inner edge of the ring is just beyond the outer Lindblad resonance (OLR) with the bar pattern speed. We estimate the amount of gas mass in the bulge core to be twice that of the ring. Our simulations indicate that the Hoag Object ring could survive at least 6 billion years after the bar vanishes.


Ring galaxies Structure Hoag’s Object 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amram P., Mendes de Oliveira C., Boulesteix J., Balkowski C.: The Hα kinematic of the Cartwheel galaxy. Astron. Astrophys. 330, 881–893 (1998)ADSGoogle Scholar
  2. Brosch N.: The nature of Hoag’s object—the perfect ringed galaxy. Astron. Astrophys. 153, 199–206 (1985)ADSGoogle Scholar
  3. Buta R.: The structure and dynamics of ringed galaxies. I – The morphology of galaxy rings, and statistics of their apparent shapes, relative sizes, and apparent orientations with respect to bars. Astrophys. J. Supplement 61, 609–630 (1986)CrossRefADSGoogle Scholar
  4. Byrd G.G., Salo H.: Tidal perturbations and galaxy spiral arms in M51, proceedings of the world of galaxies, II conference. Astrophys. Lett. Commun. 31, 193–204 (1995) (Invited Review)ADSGoogle Scholar
  5. Byrd G.G., Freeman T., Buta R.: The inner resonance ring of NGC 3081. II. Star formation, bar strength, disk surface mass density, and mass-to-light ratio. Astron. J. 131, 1377–1393 (2006)CrossRefADSGoogle Scholar
  6. Friedli D., Pfenniger D.: Destruction of Bars by Dissipative Processes. Dynamics of Galaxies and their Molecular Cloud Distribution, IAU Symposium 146, 362 (1991)ADSGoogle Scholar
  7. Hoag A.A.: A peculiar object in Serpens. Astron. J. 55, 170–170 (1950)CrossRefGoogle Scholar
  8. Howard, S.: The Whirlpool Galaxy, Dissertation, Georgia State University (1989)Google Scholar
  9. Howard S., Byrd G.: A self-gravitating simulation of the M51 system. Astron. J. 99, 1798–1812 (1990)CrossRefADSGoogle Scholar
  10. Howard S., Keel W.C., Byrd G., Burkey J.: A Simulation Atlas of Tidal Features in Galaxies. Astrophys. J. 417 502 (plus video) (1993)CrossRefADSGoogle Scholar
  11. Lynds R., Toomre A.: On the interpretation of ring galaxies: the binary ring system II Hz 4. Astrophys. J. 209, 382–388 (1976)CrossRefADSGoogle Scholar
  12. Mestel L.: On the galactic law of rotation. Monthly Notices Roy. Astron. Soc. 126, 553–575 (1963)zbMATHMathSciNetADSGoogle Scholar
  13. Miller R.H., Prendergast K.H.: Stellar dynamics in a discrete phase space. Astrophys. J. 151, 699–709 (1968)CrossRefADSGoogle Scholar
  14. Miller R.H., Prendergast K.H., Quirk W.J.: Numerical experiments on spiral structure. Astrophys. J. 161, 903–916 (1970)CrossRefADSGoogle Scholar
  15. Miller R.H.: On the stability of a disk galaxy. Astrophys. J. 190, 539–542 (1974)CrossRefADSGoogle Scholar
  16. Miller R.H.: Numerical experiments on the stability of disklike galaxies. Astrophys. J. 223, 811–823 (1978a)CrossRefADSGoogle Scholar
  17. Miller R.H.: On the stability of disklike galaxies in massive halos. Astrophys. J. 224, 32–38 (1978b)CrossRefADSGoogle Scholar
  18. O’Connell R.W., Scargle J.D., Sargent W.L.W.: The Nature of Hoag’s Object. Astrophys. J. 191, 61–62 (1974)CrossRefADSGoogle Scholar
  19. Schweizer F., Ford W.K. Jr, Jederzejewski R., Giovanelli R.: The structure and evolution of Hoag’s object. Astrophys. J. 320, 454–463 (1987)CrossRefADSGoogle Scholar
  20. Sellwood, J.A.: Disk stability. Internal kinematics and dynamics of galaxies. In: Proceedings of the Symposium. Besancon, France, August 9–13, 1982 (A83-49201 24-89), Dordrecht, D. Reidel Publishing Co., 197–202 (1983)Google Scholar
  21. Theys J.C., Spiegel E.A.: Ring galaxies. I. Astrophys. J. 208, 650–661 (1976)CrossRefADSGoogle Scholar
  22. Theys J.C., Spiegel E.A.: Ring galaxies. II. Astrophys. J. 212, 616–633 (1977)CrossRefADSGoogle Scholar
  23. Wakamatsu K.-I.: On the nature of Hoag-type galaxy NGC 6028 and related objects. Astrophys. J. 348, 448–455 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Bevill State Community CollegeJasperUSA
  2. 2.ColumbiaUSA
  3. 3.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaUSA

Personalised recommendations