Celestial Mechanics and Dynamical Astronomy

, Volume 108, Issue 1, pp 1–22 | Cite as

Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter

  • Martín Lara
  • Jesús F. PalaciánEmail author
  • Ryan P. Russell
Original Article


Preliminary mission design for planetary satellite orbiters requires a deep knowledge of the long term dynamics that is typically obtained through averaging techniques. The problem is usually formulated in the Hamiltonian setting as a sum of the principal part, which is given through the Kepler problem, plus a small perturbation that depends on the specific features of the mission. It is usually derived from a scaling procedure of the restricted three body problem, since the two main bodies are the Sun and the planet whereas the satellite is considered as a massless particle. Sometimes, instead of the restricted three body problem, the spatial Hill problem is used. In some cases the validity of the averaging is limited to prohibitively small regions, thus, depriving the analysis of significance. We find this paradigm at Enceladus, where the validity of a first order averaging based on the Hill problem lies inside the body. However, this fact does not invalidate the technique as perturbation methods are used to reach higher orders in the averaging process. Proceeding this way, we average the Hill problem up to the sixth order obtaining valuable information on the dynamics close to Enceladus. The averaging is performed through Lie transformations and two different transformations are applied. Firstly, the mean motion is normalized whereas the goal of the second transformation is to remove the appearance of the argument of the node. The resulting Hamiltonian defines a system of one degree of freedom whose dynamics is analyzed.


Restricted problems Hill’s problem Periodic orbits Stability Artificial satellites Perturbation methods Frozen orbits Satellite orbiter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello, J.: Numerical Investigation of Mapping Orbits about Jupiter’s Icy Moons. Paper AAS 2005-377, Aug 2005Google Scholar
  2. Broucke R.A.: Stability of periodic orbits in the elliptic restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969)zbMATHCrossRefADSGoogle Scholar
  3. Broucke R.A.: Long-term third-body effects via double averaging. J. Guid. Control Dyn. 26(1), 27–32 (2003)CrossRefGoogle Scholar
  4. Campbell J.A., Jefferys W.H.: Equivalence of the perturbation theories of Hori and Deprit. Celest. Mech. 2(4), 467–473 (1970)zbMATHCrossRefADSGoogle Scholar
  5. Casotto, S., Padovani, S., Russell, R.P., Lara, M.: Detecting a Subsurface Ocean from Periodic Orbits at Enceladus, AGU 2008 Fall Meeting, 15–19 Dec 2008, San Francisco, CAGoogle Scholar
  6. Coffey S., Deprit A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5(4), 366–371 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Coffey S., Deprit A., Deprit E.: Frozen orbits for satellites close to an earth-like planet. Celest. Mech. Dyn. Astron. 59(1), 37–72 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. Cushman R.: Reduction, Brouwer’s Hamiltonian and the critical inclination. Celest. Mech. 31, 409–429 (1983) Errata: id. 33, 297 (1984)MathSciNetADSGoogle Scholar
  9. Cushman R.: Reduction, Brouwer’s Hamiltonian and the critical inclination. Errata 33, 297 (1984)Google Scholar
  10. Deprit A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. Deprit A.: Delaunay normalisations. Celest. Mech. 26(1), 9–21 (1982)CrossRefMathSciNetADSGoogle Scholar
  12. Deprit A., Rom A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166–206 (1970)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. Folta, D., Quinn, D.: Lunar Frozen Orbits, Paper AIAA 2006-6749, Aug 2006Google Scholar
  14. Gómez G., Marcote M., Mondelo J.M.: The invariant manifold structure of the spatial Hill’s problem. Dyn. Syst. Int. J. 20(1), 115–147 (2005)zbMATHCrossRefGoogle Scholar
  15. Hamilton D.P., Krivov A.V.: Dynamics of distant moons of asteroids. Icarus 128(1), 241–249 (1997)CrossRefADSGoogle Scholar
  16. Hénon M.: Exploration Numérique du Problème Restreint. II. Masses Égales, Stabilité des Orbites Périodiques. Annales d’Astrophysique 28(2), 992–1007 (1965)ADSGoogle Scholar
  17. Hénon M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. Astron. Astrophys. 1, 223–238 (1969)ADSGoogle Scholar
  18. Hénon M.: Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron. Astrophys. 9, 24–36 (1970)ADSGoogle Scholar
  19. Hénon M.: Vertical stability of periodic orbits in the restricted problem II. Hill’s case. Astron. Astrophys. 30, 317–321 (1974)zbMATHADSGoogle Scholar
  20. Hill G.W.: Researches in the Lunar theory. Am. J. Math. 1, 129–147 (1878)CrossRefGoogle Scholar
  21. Hori G.-I.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)ADSGoogle Scholar
  22. Jefferys W.H.: A new class of periodic solutions of the three-dimensional restricted problem. Astron. J. 71(2), 99–102 (1966)CrossRefMathSciNetADSGoogle Scholar
  23. Kovalevsky J.: Sur la Théorie du Mouvement dun Satellite à Fortes Inclinaison et Excentricité. In: Kontopoulos, G.I. (eds) The Theory of Orbits in the Solar System and in Stellar Systems, IAU Symp. No. 25, pp. 326–344. Academic Press, London (1966)Google Scholar
  24. Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67(9), 591–598 (1962)CrossRefMathSciNetADSGoogle Scholar
  25. Kozai Y.: Motion of a lunar orbiter. Publ. Astron. Soc. Jpn. 15(3), 301–312 (1963)ADSGoogle Scholar
  26. Kozai Y.: Stationary and periodic solutions for restricted problem of three bodies in three-dimensional space. Publ. Astron. Soc. Jpn. 21(3), 267–287 (1969)ADSGoogle Scholar
  27. Lam, T., Whiffen, G.J.: Exploration of Distant Retrograde Orbits Around Europa, Paper AAS05-110, Jan 2005Google Scholar
  28. Lara M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008)CrossRefMathSciNetGoogle Scholar
  29. Lara M., Palacián J.F.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Math. Probl. Eng. 2009, 753653–753671 (2009)CrossRefGoogle Scholar
  30. Lara, M., Palacián, J.F., Russell, R.P.: Averaging and Mission Design: the Paradigm of an Enceladus Orbiter, Paper AAS09-199, Feb 2009, 20 pages.Google Scholar
  31. Lara M., Russell R.P.: On the family g of the restricted three-body problem. Monografías de la Real Academia de Ciencias de Zaragoza 30, 51–66 (2007)MathSciNetGoogle Scholar
  32. Lara M., Russell R.P., Villac V.: Classification of the distant stability regions at Europa. J. Guid. Control Dyn. 30(2), 409–418 (2007)CrossRefGoogle Scholar
  33. Lara M., San-Juan J.F.: Dynamic behavior of an orbiter around Europa. J Guid. Control Dyn. 28(2), 291–297 (2005)CrossRefGoogle Scholar
  34. Lara M., San-Juan J.F., Ferrer S.: Secular motion around triaxial, synchronously orbiting, planetary satellites: application to Europa. Chaos Interdisciplin. J. Nonlinear Sci. 15(4), 1–13 (2005)MathSciNetADSGoogle Scholar
  35. Lara M., Scheeres D.J.: Stability bounds for three-dimensional motion close to asteroids. J. Astronaut. Sci. 50(4), 389–409 (2002)MathSciNetGoogle Scholar
  36. Lidov M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9(10), 719–759 (1962). Translated from Iskusstvennye Sputniki Zemli 8, 5–45 (1961)CrossRefADSGoogle Scholar
  37. Lidov M.L., Yarskaya M.V.: Integrable cases in the problem of the evolution of a satellite orbit under the joint effect of an outside body and of the noncentrality of the planetary field. Kosmicheskie Issledovaniya 12, 155–170 (1974)ADSGoogle Scholar
  38. Lo, M.W., Williams, B.G., Bollman, W.E., Han, D., Hahn, Y., Bell, J.L., Hirst, E.A., Corwin, R.A., Hong, P.E., Howell, K.C.: Genesis Mission Design, Paper AIAA-1998-4468, Aug 1998Google Scholar
  39. Mersman W.A.: A new algorithm for the Lie transformation. Celest. Mech. 3(1), 81–89 (1970)zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. Orlov A.A.: Second-order short-period solar perturbations in the motion of the satellites of planets. Bull. Inst. Theo. Astron. 43(12), 302–309 (1970)ADSGoogle Scholar
  41. Palacián J.F.: Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field. Celest. Mech. Dyn. Astron. 98(4), 219–249 (2007)zbMATHCrossRefADSGoogle Scholar
  42. Palacián J.F., Yanguas P., Fernández S., Nicotra M.A.: Searching for periodic orbits of the spatial elliptic restricted three-body problem by double averaging. Physica D 213(1), 15–24 (2006)zbMATHMathSciNetADSGoogle Scholar
  43. Paskowitz, M.E., Scheeres, D.J.: Orbit mechanics about planetary satellites including higher order gravity fields. Paper AAS 2005-190, Jan. 2005Google Scholar
  44. Russell R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)MathSciNetGoogle Scholar
  45. Russell R.P., Brinckerhoff A.T.: Circulating eccentric orbits around planetary moons. J. Guid. Control Dyn. 32(2), 423–435 (2009)CrossRefGoogle Scholar
  46. Russell R.P., Lara M.: On the design of an Enceladus science orbit. Acta Astronautica 65(1–2), 27–39 (2009)CrossRefADSGoogle Scholar
  47. San-Juan J.F., Lara M.: Normalizaciones de orden alto en el problema de Hill. Monografías de la Real Academia de Ciencias de Zaragoza 28, 23–32 (2006)MathSciNetGoogle Scholar
  48. Scheeres D.J., Guman M.D., Villac B.F.: Stability analysis of planetary satellite orbiters: application to the Europa orbiter. J. Guid. Control Dyn. 24(4), 778–787 (2001)CrossRefGoogle Scholar
  49. Szebehely V.: Theory of Orbits. The restricted problem of three bodies. Academic Press, New York (1967)Google Scholar
  50. Vashkov’yak M.A.: A numerical-analytical method for studying the orbital evolution of distant planetary satellites. Astron. Lett. 31(1), 64–72 (2005)CrossRefADSGoogle Scholar
  51. Vashkov’yak M.A., Teslenko N.M.: Refined model for the evolution of distant satellite orbits. Astron. Lett. 35(12), 850–865 (2009)CrossRefADSGoogle Scholar
  52. Villac, B., Lara, M.: Stability maps, global dynamics and transfers. AAS Paper 05-378, Aug 2005Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Martín Lara
    • 1
  • Jesús F. Palacián
    • 2
    Email author
  • Ryan P. Russell
    • 3
  1. 1.Ephemerides SectionReal Observatorio de la ArmadaSan FernandoSpain
  2. 2.Dep. Ingeniería Matemática e InformáticaUniversidad Pública de NavarraPamplonaSpain
  3. 3.Guggenheim School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations