Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 107, Issue 4, pp 471–485 | Cite as

The use of invariant manifolds for transfers between unstable periodic orbits of different energies

  • Kathryn E. Davis
  • Rodney L. Anderson
  • Daniel J. Scheeres
  • George H. Born
Original Article

Abstract

Techniques from dynamical systems theory have been applied to the construction of transfers between unstable periodic orbits that have different energies. Invariant manifolds, trajectories that asymptotically depart or approach unstable periodic orbits, are used to connect the initial and final orbits. The transfer asymptotically departs the initial orbit on a trajectory contained within the initial orbit’s unstable manifold and later asymptotically approaches the final orbit on a trajectory contained within the stable manifold of the final orbit. The manifold trajectories are connected by the execution of impulsive maneuvers. Two-body parameters dictate the selection of the individual manifold trajectories used to construct efficient transfers. A bounding sphere centered on the secondary, with a radius less than the sphere of influence of the secondary, is used to study the manifold trajectories. A two-body parameter, κ, is computed within the bounding sphere, where the gravitational effects of the secondary dominate. The parameter κ is defined as the sum of two quantities: the difference in the normalized angular momentum vectors and eccentricity vectors between a point on the unstable manifold and a point on the stable manifold. It is numerically demonstrated that as the κ parameter decreases, the total cost to complete the transfer decreases. Preliminary results indicate that this method of constructing transfers produces a significant cost savings over methods that do not employ the use of invariant manifolds.

Keywords

Circular restricted three-body problem Unstable periodic orbits Invariant manifolds Dynamical systems theory Transfer trajectories Libration point orbits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belbruno E.A., Marsden B.G.: Resonance hopping in comets. Astron. J. 113(4), 1433–1444 (1997)CrossRefADSGoogle Scholar
  2. Bray, T.A., Goudas, C.L.: Doubly-symmetric orbits about the collinear lagrange points. Astron. J. 72(2), March (1967)Google Scholar
  3. Breakwell J.V., Brown J.V.: The halo family of 3-dimensional periodic orbits in the Earth–Moon restricted 3-body problem. Celest. Mech. 20, 389–404 (1979)MATHCrossRefADSGoogle Scholar
  4. Broschart, S., Chung, M., Hatch, S., Ma, J., Sweetser, T., Weinstein-Weiss, S., Angelopoulos, V.: Preliminary trajectory design for the Artemis Lunar Mission. In: Astrodynamics Specialist Conference, Number AAS 09-382. Pittsburgh, Pennsylvania, August 9–13 (2009)Google Scholar
  5. Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth–Moon masses, Technical Report 32-1168, Jet Propulsion Laboratory, Cal. Tech. (1968)Google Scholar
  6. Conley C.: Low energy transit orbits in the restricted three body problem. SIAM J. Appl. Math. 16(4), 732–746 (1968)MATHCrossRefMathSciNetGoogle Scholar
  7. Darwin G.H.: Periodic orbits. Acta Math. 21, 99–242 (1897)CrossRefMathSciNetGoogle Scholar
  8. Dunham D.W., Farquhar R.W.: Libration point missions, 1978–2002. In: Gómez, G., Lo, M.W., Masdemont, J.J. Libration Point Orbits and Applications: Proceedings of the Conference, World Scientific Publishing Company, Aiguablava, Spain (2003)Google Scholar
  9. Farquhar R.W., Kamel A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)MATHCrossRefADSGoogle Scholar
  10. Folta, D., Lowe, J.: Formation flying of a telescope/occulter system with large separations in an L2 libration orbit. In: 59th International Astronautical Congress, Number IAC-08-C1.6.2. Glasgow, Scotland, Sept 30 – Oct 3 (2008)Google Scholar
  11. Gardner, J.P.: The James Webb Space Telescope. In: Large Telescopes and Virtual Observatory: Visions for the Future, 25th meeting of the IAU, Sydney, Australia, July (2003)Google Scholar
  12. Gómez G., Jorba A., Llibre J., Martinez R., Masdemont J., Simó C.: Dynamics and Mission Design near Libration Points, vol. I–IV. World Scientific Publishing Co., Singapore (2001)Google Scholar
  13. Gómez G., Jorba A., Masdemont J., Simó C.: Study of the transfer between halo orbits. Acta Astronaut. 43, 493–520 (1998)CrossRefGoogle Scholar
  14. Gómez G., Koon W.S., Marsden J.E., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  15. Gómez, G., Masdemont, J.: Some zero cost transfers between libration point orbits. In: AAS/AIAA Spaceflight Mechanics Meeting, Number AAS 00-177. Clearwater, Florida, January (2000)Google Scholar
  16. Grebow, D., Ozimek, M., Howell, K., Folta, D.: Multi-body orbit architectures for lunar south Pole Coverage. In: AIAA/AAS Astrodynamics Specialist Meeting, Number AAS 06-179, Tampa, Florida, 22–26 January (2006)Google Scholar
  17. Hamera, K., Mosher, T., Gefreh, M., Paul, R., Slavkin, L., Trojan, J.: An evolvable lunar communication and navigation constellation concept. In: IEEE Aerospace Conference, Number IEEE 1491. Big Sky, Montana, 28 April–1 May (2008)Google Scholar
  18. Hechler M., Cobos J.: Herschel, Planck and the Gaia Orbit Design. In: Gómez, G., Lo, M.W., Masdemont, J.J. (eds) Libration Point Orbits and Applications: Proceedings of the Conference., World Scientific Publishing Company, Aiguablava, Spain (2003)Google Scholar
  19. Hénon M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003)MATHCrossRefADSGoogle Scholar
  20. Hill, K., Parker, J.S., Born, G.H., Demandante, N.: A lunar L2 navigation, communication, and gravity mission. In: AIAA/AAS Astrodynamics Specialist Conference, Number AIAA 2006-6662, Keystone, Colorado, August (2006)Google Scholar
  21. Howell K.C.: Three-dimensional, periodic, ‘Halo’ Orbits. Celest. Mech. 32(1), 53–71 (1984)MATHCrossRefMathSciNetADSGoogle Scholar
  22. Howell K.C., Hiday-Johnston L.A.: Time-free transfers between libration point orbits in the elliptic restricted problem. Acta Astronaut. 32, 245–254 (1994)CrossRefGoogle Scholar
  23. Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)MATHCrossRefMathSciNetADSGoogle Scholar
  24. Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)MathSciNetGoogle Scholar
  25. Lo, M.W., Parker, J.S.: Chaining simple periodic three-body orbits. In: AAS/AIAA Astrodynamics Specialist Conference, Number AAS 2005-380. Lake Tahoe, California, August 7–11 (2005)Google Scholar
  26. Lo, M.W., Ross, S.: Surfing the solar system: invariant manifolds and the dynamics of the solar system. Technical Report IOM 312/97, 2-4. Jet Propulsion Laboratory (1998)Google Scholar
  27. Lo M.W., Williams B.G., Bollman W.E., Han D.S., Hahn Y.S., Bell J.L., Hirst E.A., Corwin R.A., Hong P.E., Howell K.C., Barden B., Wilson R.: Genesis mission design. J. Astronaut. Sci. 49(1), 169–184 (2001)Google Scholar
  28. McGehee, R.P.: Some homoclinic orbits for the restricted three body problem, Ph.D. thesis, University of Wisconsin, Madison, Wisconsin, (1969)Google Scholar
  29. Mingotti G., Topputo F., Bernelli-Zazzera F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009)CrossRefMathSciNetADSGoogle Scholar
  30. Moulton, F.R.: Periodic Orbits. Carnegie Institute of Washington Publications 161, (1920)Google Scholar
  31. Parker J.S., Born G.H.: Modeling a low-energy Ballistic Lunar transfer using dynamical systems theory. J. Spacecr. Rockets 45(6), 1269–1281 (2008)CrossRefADSGoogle Scholar
  32. Parker T.S., Chua L.O.: Practical numerical algorithms for chaotic systems. Springer, New York (1989)MATHGoogle Scholar
  33. Pergola P., Geurts K., Casaregola C., Andrenucci M.: Earth–Mars halo to halo low thrust manifold transfers. Celest. Mech. Dyn. Astron. 105(1–3), 19–32 (2009)CrossRefMathSciNetADSGoogle Scholar
  34. Richardson, D.L., Cary, N.D.: A uniformly valid solution for motion of the interior libration point for the perturbed elliptic-restricted problem. In: AIAA/AAS Astrodynamics Specialist Conference, Number AIAA 75-021, July (1975)Google Scholar
  35. Russell R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)MathSciNetGoogle Scholar
  36. Strogatz S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, L.L.C. (1994)Google Scholar
  37. Strömgren, E.: Connaissance actuelle des orbites dans le problème des trios corps. Copenhagen Observatory Publications, (100), also Bull. Astr. 9(87) (1935)Google Scholar
  38. Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)Google Scholar
  39. Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem. Part II. Commun. Math. Phys. 259(3), 561–576 (2005)MATHCrossRefADSGoogle Scholar
  40. Wilson, R.: Derivation of differential correctors used in GENESIS mission design, Technical Report JPL IOM 312.I-03-002, Jet Propulsion Laboratory (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kathryn E. Davis
    • 1
  • Rodney L. Anderson
    • 1
  • Daniel J. Scheeres
    • 1
  • George H. Born
    • 1
  1. 1.Colorado Center for Astrodynamics ResearchUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations