On the deflection of asteroids with mirrors

Original Article


This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable impact parameter with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid.


Asteroid deflection Formation flying Orbit control Yarkovsky effect Apophis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barucci M., Yoshikawa M., Michel P., Kawagushi J., Yano H., Brucato J., Franchi I., Dotto E., Fulchignoni M., Ulamec S.: MARCO POLO: Near earth object sample return mission. Exp. Astron. 23(3), 785–808 (2009)CrossRefADSGoogle Scholar
  2. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised edn. AIAA Education Series, New York (1999)Google Scholar
  3. Brož, M.: Yarkovsky Effect and the Dynamics of the Solar System, PhD thesis, Faculty of Mathematics and Physics, Astronomical Institute, Charles University, Prague, Czech Republic (2006)Google Scholar
  4. Carusi A., Valsecchi G.B., D’abramo G., Bottini A.: Deflecting NEOs in route of collision with the earth. Icarus 159(2), 417–422 (2002). doi:10.1006/icar.2002.6906 CrossRefADSGoogle Scholar
  5. Chesley, S.R.: Potential impact detection for near-Earth asteroids: The case of 99942 Apophis (2004 MN4). In: Asteroids, Comets, Meteors Proceedings, vol. 229, pp. 215–228. IAU Symposium (2005)Google Scholar
  6. Colombo C., Vasile M., Radice G.: Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming. Celest. Mech. Dyn. Astron. 105(1–3), 75–112 (2009)CrossRefMathSciNetADSGoogle Scholar
  7. Colombo C., Vasile M., Radice G.: Semi-analytical solution for the optimal low-thrust deflection of near-earth objects. J. Guid. Control Dyn. 32(3), 796–809 (2009). doi:10.2514/1.40363 CrossRefGoogle Scholar
  8. Conway B.: Near-optimal deflection of earth-approaching asteroids. J. Guid. Control Dyn. 24(5), 1035–1037 (2001)CrossRefGoogle Scholar
  9. Delbò M., Cellino A., Tedesco E.: Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus 188, 266–269 (2007). doi:10.1016/j.icarus.2006.12.024 CrossRefADSGoogle Scholar
  10. Giorgini J., Benner L., Ostroa S., Nolan M., Busch M.: Predicting the earth encounters of (99942) apophis. Icarus 193, 1–19 (2008). doi:10.1016/j.icarus.2007.09.012 ADSGoogle Scholar
  11. Glassmeier K.H., Boehnhardt H., Koschny D., Kührt E., Richter I.: The rosetta mission: Flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007)CrossRefADSGoogle Scholar
  12. Gong S.P., Li J.F., BaoYin H.X.: Formation flying solar-sail gravity tractors in displaced orbit for towing near-earth asteroids. Celest. Mech. Dyn. Astron. 105(1–3), 159–177 (2009)CrossRefMathSciNetADSGoogle Scholar
  13. Hall C.D., Ross I.M.: Dynamics and control problems in the deflection of Near-Earth Objects. Adv. Astronaut. Sci. 67(640), 1–18 (1997)Google Scholar
  14. Hampton D., Baer J., Huisjen M., Varner C., Delamere A., Wellnitz D., A’Hearn M., Klaasen K.: An overview of the instrument suite for the deep impact mission. Space Sci. Rev. 117(1–2), 43–93 (2005)CrossRefADSGoogle Scholar
  15. Hu W., Scheeres D.J.: Spacecraft motion about slowly rotating asteroids. J. Guid. Control Dyn. 25(4), 765–775 (2002)CrossRefGoogle Scholar
  16. IAU Minor Planet Center: Observer services: Neos. http://www.cfa.harvard.edu/iau/mpc.html (2010)
  17. Izzo, D.: On the deflection of potentially hazardous objects. In: AIAA/AAS Space Flight Mechanics Conference. Copper Mountain, Colorado (2005)Google Scholar
  18. Kahle R., Kührt E., Hahn G., Knollenberg J.: Physical limits of solar collectors in deflecting earth-threatening asteroids. Aerosp. Sci. Technol. 10, 253–263 (2006). doi:10.1016/j.ast.2005.12.004 CrossRefGoogle Scholar
  19. Legge, H., Boettcher, R.: Modelling control thrust plume flow and impingement. In: International Symposium on Rarefied Gas Dynamics, pp. 983–992 (1982)Google Scholar
  20. Lunan D.: Need we protect earth from space objects and if so, how?. Space Policy 8(1), 90–91 (1992)CrossRefGoogle Scholar
  21. Maddock C., Vasile M.: Design of optimal spacecraft-asteorid formations through a hybrid global optimization approach. J. Intell. Comput. Cybern. 1(2), 239–268 (2008). doi:10.1108/17563780810874735 MATHCrossRefGoogle Scholar
  22. McAdams, J.V., Dunham, D.W., Mosher, L.E., Ray, J.C., Antreasian, P.G., Helfrich, C.E., Miller, J.K.: Maneuver history for the NEAR mission—launch through Eros orbit insertion. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA-2000-4141 (2000)Google Scholar
  23. Melosh H.J., Nemchinov I.V.: Solar asteroid diversion. Nature 366, 21–22 (1993)CrossRefADSGoogle Scholar
  24. Melosh H.J., Nemchinov I.V., Zetzer Y.I.: Non-nuclear strategies for deflecting comets and asteroids. In: Gehrels, T. (eds) Hazard Due to Comets and Asteroids, pp. 1111–1132. University of Arizona Press, Tucson (1994)Google Scholar
  25. Nakamura, A.M., Michel, P.: Asteroids and their collisional disruption. In: Lecture Notes in Physics, Small Bodies in Planetary Systems, pp. 1–27. Springer, Berlin (2009)Google Scholar
  26. NASA Near Earth Object program: 99942 Apophis (2004 MN4) impact risk. Online database, http://neo.jpl.nasa.gov/risk/a99942.html (2010)
  27. Near-Earth Object Science Definition Team: Study to determine the feasibility of extending the search for Near-Earth Objects to smaller limiting diameters. Tech. rep., National Aeronautics and Space Administration (NASA) (2003)Google Scholar
  28. Park S.Y., Mazanek D.D.: Deflection of earth-crossing asteroids/comets using rendezvous spacecraft and laser ablation. J. Astronaut. Sci. 53(1), 21–37 (2005)Google Scholar
  29. Perozzi E., Casalino L., Colasurdo G., Rossi A., Valsecchi G.: Resonant fly-by missions to near earth asteroids. Celest. Mech. Dyn. Astron. 83(1–4), 49–62 (2002)MATHCrossRefADSGoogle Scholar
  30. Rayman M., Varghese P., Lehman D., Livesay L.: Results from the deep space 1 technology validation mission. Acta Astronaut. 47(2), 475–487 (2000)CrossRefADSGoogle Scholar
  31. Remo J.L.: Classifying and modeling NEO material properties and interactions. In: Gehrels, T., Matthews, M.S., Schumann, A. (eds) Hazards Due to Comets and Asteroids, Space Science Series, pp. 551–596. University of Arizona Press, Tucson (1994)Google Scholar
  32. Rossi A., Marzari F., Farinella P.: Orbital evolution around irregular bodies. Earth Planets Space 51, 1173–1180 (1999)ADSGoogle Scholar
  33. Russell C.T., Capaccioni F., Coradini A., de Sanctis M.C., Feldman W.C., Jaumann R., Keller H.U., McCord T.B., McFadden L.A., Mottola S., Pieters C.M., Prettyman T.H., Raymond C.A., Sykes M.V., Smith D.E., Zuber M.T.: Dawn mission to Vesta and Ceres. Earth Moon Planets 101(1–2), 65–91 (2007)CrossRefADSGoogle Scholar
  34. Sanchez J.P., Vasile M., Radice G.: Consequences of asteroid fragmentation during impact hazard mitigation. J Guid. Control Dyn. 33(1), 126–146 (2010). doi:10.2514/1.43868 CrossRefGoogle Scholar
  35. Sanchez Cuartielles J.P., Colombo C., Vasile M., Radice G.: Multi-criteria comparison among several mitigation strategies for dangerous near earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009). doi:10.2514/1.36774 CrossRefGoogle Scholar
  36. Scheeres, D.J., Schweickart, R.L.: The mechanics of moving asteroids. In: Planetary Defense Conference: Protecting Earth from Asteroids. AIAA, Orange County, California (2004)Google Scholar
  37. Schweickart, R.L.: A call to (considered) action: International space development conference. Occasional Paper 0501, B612 Foundation (2005)Google Scholar
  38. Stephan T.: Assessing the elemental composition of comet 81P/Wild 2 by analyzing dust collected by stardust. Space. Sci. Rev. 138(1–4), 247–258 (2008)CrossRefMathSciNetADSGoogle Scholar
  39. Vasile M., Colombo C.: Optimal impact strategies for asteroid deflection. J. Guid. Control Dyn. 31(4), 858–872 (2008). doi:10.2514/1.33432 CrossRefGoogle Scholar
  40. Vasile, M., Maddock, C., Radice, G., McInnes, C.: Call for ideas: NEO Encounter 2029, NEO deflection through a multi-mirror system. Tech. Rep. Ariadna ID: 08/4301, Contract Number: 21665/08/NL/CB, ESA/ESTEC Advanced Concepts Team (2009)Google Scholar
  41. Vokrouhlicky D., Chesley S., Milani A.: On the observability of radiation forces acting on near-earth asteroids. Celest. Mech. Dyn. Astron. 81(1–2), 149–165 (2001)MATHCrossRefADSGoogle Scholar
  42. Wang J., Davis A., Clayton R., Hashimoto A.: Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir. Geochimica et Cosmochim. Acta 63(6), 953–966 (1999). doi:10.1016/S0016-7037(98)00286-5 CrossRefADSGoogle Scholar
  43. Yoo S.M., Song Y.J., Park S.Y., Choi K.H.: Spacecraft formation flying for earth-crossing object deflections using a power limited laser ablating. Adv. Space Res. 43, 1873–1889 (2009). doi:10.1016/j.asr.2009.03.025 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Space Advanced Research Team Department of Aerospace EngineeringUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations