A survey of near-mean-motion resonances between Venus and Earth

  • Á. Bazsó
  • R. Dvorak
  • E. Pilat-Lohinger
  • V. Eybl
  • Ch. Lhotka
Original Article

Abstract

It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.

Keywords

Mean motion resonances Venus Earth couple Mercury’s escape Inner Solar System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate J.H., Douglas M.R., Gursel Y., Sussman G.J., Wisdom J.: The outer solar system for 200 million years. Astron. J. 92, 176–194 (1986)CrossRefADSGoogle Scholar
  2. Batygin K., Laughlin G.: On the dynamical stability of the solar system. Astrophys. J. 683, 1207–1216 (2008)CrossRefADSGoogle Scholar
  3. Candy J., Rozmus W.: A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 92, 230–256 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  4. Chambers J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. Roy. Astron. Soc. 304, 793–799 (1999)CrossRefADSGoogle Scholar
  5. Delva M.: Integration of the elliptic restricted three-body problem with Lie series. Celest. Mech. 34, 145–154 (1984)MATHCrossRefADSGoogle Scholar
  6. Dufey J., Lemaître A., Rambaux N.: Planetary perturbations on Mercury’s libration in longitude. Celest. Mech. Dyn. Astron. 101, 141–157 (2008)MATHCrossRefADSGoogle Scholar
  7. Dvorak R., Süli Á.: On the stability of the terrestrial planets as models for exosolar planetary systems. Celest. Mech. Dyn. Astron. 83, 77–95 (2002)MATHCrossRefADSGoogle Scholar
  8. Dvorak, R., Gamsjäger, C.: A new determination of the basic frequencies in planetary motion. In: Freistetter, F., Dvorak, R., Érdi B. (eds.) Proceedings of the 3rd Austrian–Hungarian Workshop on Trojans and related Topics, pp. 49–58 (2003)Google Scholar
  9. Eggl, S., Dvorak, R.: An introduction to common numerical integration codes used in dynamical astronomy. Lect. Notes Phys. 790, 431–480, Souchay, J.J., Dvorak, R. (eds.) (2010)Google Scholar
  10. Froeschlé C., Lega E., Gonczi R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)MATHCrossRefADSGoogle Scholar
  11. Froeschlé C., Lega E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)MATHCrossRefADSGoogle Scholar
  12. Hanslmeier A., Dvorak R.: Numerical integration with Lie series. Astron. Astrophy. 132, 203–207 (1984)MATHMathSciNetADSGoogle Scholar
  13. Henon M., Heiles C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)CrossRefMathSciNetADSGoogle Scholar
  14. Kallinger T., Reegen P., Weiss W.W.: A heuristic derivation of the uncertainty for frequency determination in time series data. Astron. Astrophys. 481, 571–574 (2008)CrossRefADSGoogle Scholar
  15. Laskar J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237–238 (1989)CrossRefADSGoogle Scholar
  16. Laskar J.: The chaotic motion of the solasr system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)CrossRefADSGoogle Scholar
  17. Laskar J.: Large-scale chaos in the solar system. Astron. Astrophys. 287, L9–L12 (1994)ADSGoogle Scholar
  18. Laskar J.: Chaotic diffusion in the solar system. Icarus 196, 1–15 (2008)CrossRefADSGoogle Scholar
  19. Laskar J., Gastineau M.: Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817–819 (2009)CrossRefADSGoogle Scholar
  20. Lichtenegger H.: The dynamics of bodies with variable masses. Celest. Mech. 34, 357–368 (1984)MATHCrossRefMathSciNetADSGoogle Scholar
  21. Michtchenko S., Ferraz-Mello T.A.: Modeling the 5:2 mean-motion resonance in the Jupiter-Saturn planetary system. Icarus 149, 357–374 (2001)CrossRefADSGoogle Scholar
  22. Murray N., Holman M.: The origin of chaos in the outer solar system. Science 283, 1877–1881 (1999)CrossRefADSGoogle Scholar
  23. Pilat-Lohinger E., Robutel P., Süli Á., Freistetter F.: On the stability of Earth-like planets in multi-planet systems. Celest. Mech. Dyn. Astron. 102, 83–95 (2008)MATHCrossRefADSGoogle Scholar
  24. Reegen P., SigSpec I.: SigSpec I. Frequency- and phase-resolved significance in Fourier space. Astron. Astrophys. 467, 1353–1371 (2007)CrossRefADSGoogle Scholar
  25. Schwarz R., Süli Á., Dvorak R., Pilat-Lohinger E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009)MATHCrossRefADSGoogle Scholar
  26. Sussman G.J., Wisdom J.: Chaotic evolution of the solar system. Science 257, 56–62 (1992)CrossRefMathSciNetADSGoogle Scholar
  27. Varadi F., Ghil M., Kaula W.M.: Jupiter, Saturn, and the edge of chaos. Icarus 139, 286–294 (1999)CrossRefADSGoogle Scholar
  28. Wisdom J.L.: The Origin of the Kirkwood Gaps: A Mapping for Asteroidal Motion Near the 3/1 Commensurability. California Institute of Technology, Pasadena (1981)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Á. Bazsó
    • 1
  • R. Dvorak
    • 1
  • E. Pilat-Lohinger
    • 1
  • V. Eybl
    • 1
  • Ch. Lhotka
    • 1
  1. 1.Institute of AstronomyUniversity of ViennaViennaAustria

Personalised recommendations