Advertisement

Effects of interplanetary dust on the LISA drag-free constellation

  • Massimo Cerdonio
  • Fabrizio De Marchi
  • Roberto De Pietri
  • Philippe Jetzer
  • Francesco Marzari
  • Giulio MazzoloEmail author
  • Antonello Ortolan
  • Mauro Sereno
Original Article

Abstract

The analysis of non-radiative sources of static or time-dependent gravitational fields in the Solar System is crucial to accurately estimate the free-fall orbits of the LISA space mission. In particular, we take into account the gravitational effects of Interplanetary Dust (ID) on the spacecraft trajectories. The perturbing gravitational field has been calculated for some ID density distributions that fit the observed zodiacal light. Then we integrated the Gauss planetary equations to get the deviations from the LISA Keplerian orbits around the Sun. This analysis can be eventually extended to Local Dark Matter (LDM), as gravitational fields are expected to be similar for ID and LDM distributions. Under some strong assumptions on the displacement noise at very low frequency, the Doppler data collected during the whole LISA mission could provide upper limits on ID and LDM densities.

Keywords

LISA Interplanetary dust Local dark matter Free-fall orbits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong J.W. et al.: Time delay interferometry. Class. Quantum Grav. 20, 283–289 (2003)CrossRefADSGoogle Scholar
  2. Bender, P. et al.: Pre-Phase A Report, 2nd edn. (1998)Google Scholar
  3. Bender, P. et al.: LISA: a cornerstone mission for the observation of gravitational waves System and Technology Study. Report ESA-SCI 11 (2000)Google Scholar
  4. Bender P.: LISA sensitivity below 0.1 mHz. Class. Quantum Grav. 20, 301–310 (2003)CrossRefADSGoogle Scholar
  5. Bik J.J.C.M. et al.: LISA satellite formation control. Adv. Space. Res. 40, 25–34 (2007)CrossRefADSGoogle Scholar
  6. Bocaletti D., Pucacco G.: Theory of Orbits. Springer, Berlin (2001)Google Scholar
  7. Cerdonio M. et al.: Local Dark Matter searches with LISA. Class. Quantum Grav. 26, 094022 (2009)CrossRefADSGoogle Scholar
  8. Dhurandhar S.V. et al.: Fundamentals of the LISA stable flight formation. Class. Quantum Grav. 22, 481–487 (2005)zbMATHCrossRefADSGoogle Scholar
  9. Giese R.H. et al.: Three-dimensional models of the zodiacal dust cloud: a comparative study. Icarus 68, 395–411 (1986)CrossRefADSGoogle Scholar
  10. Grün E. et al.: Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985)CrossRefADSGoogle Scholar
  11. Helstrom C.W.: Statistical Theory of Signal Detection. Pergamon Press, New York (1960)Google Scholar
  12. Jiang F. et al.: Approximate analysis for relative motion of satellite formation flying in elliptical orbits. Celestial Mech. Dyn. Astron. 98, 31–66 (2007)zbMATHCrossRefADSGoogle Scholar
  13. Khirplovic I.B., Pitjeva E.V.: Upper limits on density of dark matter in solar system. Int. J. Mod. Phys. 15, 616–618 (2006)ADSGoogle Scholar
  14. Levasseur-Regourd A.C.: Optical and Thermal Properties of Zodiacal Dust, vol. 104, pp. 301–308. Physics, Chemistry and Dynamics of Interplanetary Dust. ASP Conference series, San Francisco (1996)Google Scholar
  15. Proakis J.G., Manolakis D.G.: Digital Signal Processing. 2nd edn. Macmillan Publishing Company, New York (1992)zbMATHGoogle Scholar
  16. Sereno M., Jetzer Ph.: Dark matter versus modifications of the gravitational inverse-square law: results from planetary motion in the Solar system. Mont. Not. R. Astron. Soc. 371, 626–632 (2006)CrossRefADSGoogle Scholar
  17. Sweetser T.H.: An end-to-end description of the LISA mission. Class. Quantum Grav. 22, 429–435 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Massimo Cerdonio
    • 1
  • Fabrizio De Marchi
    • 2
  • Roberto De Pietri
    • 3
  • Philippe Jetzer
    • 4
  • Francesco Marzari
    • 1
  • Giulio Mazzolo
    • 5
    Email author
  • Antonello Ortolan
    • 6
  • Mauro Sereno
    • 4
    • 7
  1. 1.Department of PhysicsUniversity of Padova and INFN PadovaPadovaItaly
  2. 2.Department of PhysicsUniversity of Trento and INFN TrentoPovo (Trento)Italy
  3. 3.Department of PhysicsUniversity of Parma and INFN ParmaParmaItaly
  4. 4.Institute of Theoretical PhysicsUniversity of ZürichZürichSwitzerland
  5. 5.Max Planck Institut für GravitationsphysikHannoverGermany
  6. 6.INFN Laboratori Nazionali di LegnaroLegnaro (Padova)Italy
  7. 7.Department of PhysicsPolitecnico di TorinoTorinoItaly

Personalised recommendations