Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations

Abstract

A new algorithm is presented for the numerical integration of second-order ordinary differential equations with perturbations that depend on the first derivative of the dependent variables with respect to the independent variable; it is especially designed for few-body problems with velocity-dependent perturbations. The algorithm can be used within extrapolation methods for enhanced accuracy, and it is fully explicit, which makes it a competitive alternative to standard discretization methods.

This is a preview of subscription content, log in to check access.

References

  1. Bulirsch R., Stoer J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numerische Mathematik 8, 1–13 (1966)

  2. Chambers J.: Symplectic integrators with complex time steps. Astron. J. 126, 1119–1126 (2003)

  3. Dunning, R.: The orbital mechanics of flight mechanics. Tech. rep. (1973)

  4. Gragg W.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal. 2, 384–403 (1965)

  5. Hairer E., Stoffer D.: Reverisble long-term integration with variable step sizes. SIAM J. Sci. Comput. 18, 257–269 (1997)

  6. Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

  7. Harfst S., Gualandris A., Merritt D., Mikkola S.: A hybrid N-body code incorporating algorithmic regularization and post-newtonian forces. Mon. Not. R. Astron. Soc. 389, 2–12 (2008)

  8. Kane C., Marsden J., Ortiz M., West M.: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295–1325 (2000)

  9. Kirk D.: Optimal Control Theory. An Introduction. Dover Publications, Mineola, NY (2004)

  10. Marsden J., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

  11. Meditch J.: On the problem of optimal thrust for a lunar soft landing. IEEE Trans. Automat. Contr. 4, 477–484 (1964)

  12. Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)

  13. Mikkola S., Merritt D.: Algorithmic regularization with velocity-dependent forces. Mon. Not. R. Astron. Soc. 372, 219–223 (2006)

  14. Mikkola S., Merritt D.: Implementing few-body algorithmic regularization with post-newtonian terms. Astron. J. 135, 2398–2405 (2008)

  15. Mikkola S., Tanikawa K.: Algorithmic regularization of the few-body problem. Mon. Not. R. Astron. Soc. 310, 745–749 (1999a)

  16. Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999b)

  17. Mititelu G.: Analytical solutions for the equations of motion of a space vehicle during the atmospheric re-entry phase on a 2-D trajectory. Celest. Mech. Dyn. Astron. 103, 327–342 (2009)

  18. Pástor P., Klačka J., Kómar L.: Motion of dust in mean motion resonances with planets. Celest. Mech. Dyn. Astron. 103, 343–364 (2009)

  19. Pavlis, N., Holmes, S., Kenyon, S., Factor, J.: An earth gravitational model to degree 2160: EGM2008. presented at the 2008 general assembly of the European geosciences union, Vienna, Austria, 13–18 April (2008)

  20. Preto M., Tremaine S.: A class of symplectic integrators with adaptive timestep for separable hamiltonian systems. Astron. J. 118, 2532–2541 (1999)

  21. Soffel M.: Relativity in Astrometry. Celestial Mechanics and Geodesy. Springer, Berlin (1989)

  22. Stengel R.: Optimal Control and Estimation. Dover Publications, Mineola, NY (1994)

  23. Vallado D.: Fundamentals of Astrodynamics and Applications, Space Technology Library, vol. 21. Springer, Hawthorne, CA (2007)

  24. Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

Download references

Author information

Correspondence to Christian Hellström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hellström, C., Mikkola, S. Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest Mech Dyn Astr 106, 143–156 (2010). https://doi.org/10.1007/s10569-009-9248-8

Download citation

Keywords

  • Algorithmic regularization
  • Extrapolation methods
  • Auxiliary velocity algorithm (AVA)
  • Bulirsch-Stoer