Celestial Mechanics and Dynamical Astronomy

, Volume 104, Issue 3, pp 257–289 | Cite as

Tidal torques: a critical review of some techniques

Original Article

Abstract

We review some techniques employed in the studies of torques due to bodily tides, and explain why the MacDonald formula for the tidal torque is valid only in the zeroth order of the eccentricity divided by the quality factor, while its time-average is valid in the first order. As a result, the formula cannot be used for analysis in higher orders of e/Q. This necessitates some corrections in the current theory of tidal despinning and libration damping (though the qualitative conclusions of that theory may largely remain correct). We demonstrate that in the case when the inclinations are small and the phase lags of the tidal harmonics are proportional to the frequency, the Darwin-Kaula expansion is equivalent to a corrected version of the MacDonald method. The latter method rests on the assumption of existence of one total double bulge. The necessary correction to MacDonald’s approach would be to assert (following Singer, Geophys. J. R. Astron. Soc., 15: 205–226, 1968) that the phase lag of this integral bulge is not constant, but is proportional to the instantaneous synodal frequency (which is twice the difference between the evolution rates of the true anomaly and the sidereal angle). This equivalence of two descriptions becomes violated by a nonlinear dependence of the phase lag upon the tidal frequency. It remains unclear whether it is violated at higher inclinations. Another goal of our paper is to compare two derivations of a popular formula for the tidal despinning rate, and emphasise that both are strongly limited to the case of a vanishing inclination and a certain (sadly, unrealistic) law of frequency-dependence of the quality factor Q—the law that follows from the phase lag being proportional to frequency. One of the said derivations is based on the MacDonald torque, the other on the Darwin torque. Fortunately, the second approach is general enough to accommodate both a finite inclination and the actual rheology. We also address the rheological models with the Q factor scaling as the tidal frequency to a positive fractional power, and disprove the popular belief that these models introduce discontinuities into the equations and thus are unrealistic at low frequencies. Although such models indeed make the conventional expressions for the torque diverge at vanishing frequencies, the emerging infinities reveal not the impossible nature of one or another rheology, but a subtle flaw in the underlying mathematical model of friction. Flawed is the common misassumption that damping merely provides phase lags to the terms of the Fourier series for the tidal potential. A careful hydrodynamical treatment by Sir George Darwin (1879), with viscosity explicitly included, had demonstrated that the magnitudes of the terms, too, get changed—a fine detail later neglected as “irrelevant”. Reinstating of this detail tames the fake infinities and rehabilitates the “impossible” scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies). Finally, we explore the limitations of the popular formula interconnecting the quality factor and the phase lag. It turns out that, for low values of Q, the quality factor is no longer equal to the cotangent of the lag.

Keywords

Tides Body tides Bodily tides Land tides Tidal forces Tidal torques MacDonald torques Libration Natural satellites Tidal despinning Spin–orbit interaction Spin–orbit coupling Spin–orbit resonances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M.E.: The weak-friction approximation and tidal evolution in close binary systems. Astrophys. Space Sci. 23, 459–510 (1973)CrossRefADSGoogle Scholar
  2. Bills, B.G., Neumann, G.A., Smith, D.E., and Zuber, M.T.: Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res. 110, 2376–2406 (2005) doi: 10.1029/2004JE002376, 2005Google Scholar
  3. Churkin, V.A.: The Love numbers for the models of inelastic Earth.” Preprint No 121. Institute of Applied Astronomy. St.Petersburg, Russia (1998) (in Russian)Google Scholar
  4. Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)CrossRefADSGoogle Scholar
  5. Darwin G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans. R. Soc. London 170, 447–530 (1879) http://www.jstor.org/view/02610523/ap000081/00a00010/
  6. Darwin G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. R. Soc. London 171, 713–891 (1880) http://www.jstor.org/view/02610523/ap000082/00a00200
  7. Darwin, G.H.: Tidal friction and cosmogony. In: Darwin, G.H., Scientific Papers, Vol. 2. Cambridge University Press, NY (1908)Google Scholar
  8. Dobrovolskis A.: Chaotic rotation of Nereid?. Icarus 118, 181–195 (1995)CrossRefADSGoogle Scholar
  9. Dobrovolskis A.: Spin states and climates of eccentric exoplanets. Icarus 192, 1–23 (2007)CrossRefADSGoogle Scholar
  10. Efroimsky, M.: The theory of bodily tides. The models and the physics. astro-ph/0605521 (2006)Google Scholar
  11. Efroimsky, M.: Can the tidal quality factors of terrestrial planets and moons scale as positive powers of the tidal frequency? (2008) arXiv:0712.1056Google Scholar
  12. Efroimsky M., Lainey V.: The physics of bodily tides in terrestrial planets, and the appropriate scales of dynamical evolution. J. Geophys. Res. Planets 112, E12003 (2007). doi: 10.1029/2007JE002908 CrossRefADSGoogle Scholar
  13. Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest Mech Dyn Astron 101, 171–201 (2008)MATHCrossRefADSGoogle Scholar
  14. Gerstenkorn H.: Über Gezeitenreibung beim Zweikörperproblem. Zeitschrift für Astrophysik 36, 245–274 (1955)MATHADSMathSciNetGoogle Scholar
  15. Getino, J., Escapa, A., and Garcf́a, A.: Spheroidal and toroidal modes for tidal kinetic energy in axisymmetric, slightly elliptical, elastic bodies. Rom. Astron. J. , 143–161 (2003)Google Scholar
  16. Goldreich P.: History of the Lunar orbit. Rev. Geophys. 4, 411–439 (1966a)CrossRefADSGoogle Scholar
  17. Goldreich P.: Final spin states of planets and satellites. Astron. J. 4, 411–439 (1966b)Google Scholar
  18. Goldreich P., Peale S.: Spin-orbit coupling in the Solar System. Astron. J. 71, 425–438 (1966)CrossRefADSGoogle Scholar
  19. Gooding R.H., Wagner C.A.: On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101, 247–272 (2008)CrossRefADSMathSciNetGoogle Scholar
  20. Gurfil P., Lainey V., Efroimsky M.: Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach. Celest Mech Dyn Astron 99, 261–292 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  21. Herschel, J.F.W.: About volcanoes and earthquakes. Good Words 4, 53–58 (1863). (Reprinted in: Herschel, J.F.W.: Familiar Lectures on Scientific Subjects, pp. 1–46. Alexander Strahan Publishers, London (1866))Google Scholar
  22. Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)MATHADSGoogle Scholar
  23. Innanen K.A., Zheng J.Q., Mikkola S., Valtonen M.J.: The Kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915–1919 (1997)CrossRefADSGoogle Scholar
  24. Johnson, S.: A Dictionary of the English Language: in which the words are deduced from their originals, and illustrated with their different significations by examples from the best writers; to which are prefixed a history of the language, and an English grammar. Printed by W. Strahan, for J. and P. Knapton, T. and T. Longman, C. Hitch, L. Hawes, A. Millar, R. and J. Dodsley, Folio, London (1755)Google Scholar
  25. Kant, I.: Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechselung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe und woraus man sich ihrer versichern könne, welche von der Königl. Akademie der Wissenschaften zu Berlin zum Preise für das jetztlaufende Jahr aufgegeben worden. In: Kant’s gesammelte Schriften I, 183–191. Edited by the Royal Prussian Academy of Sciences, George Reimer, Berlin 1900 (1754) http://www.ikp.uni-bonn.de/Kant/aa01/Inhalt1.html [English translations: Kant, I.: Essay on the Retardation of the Rotation of the Earth. Translation by William Hastie, in: Hastie, W. 1900. Kant’s Cosmogony, as in his Essay on the Retardation of the Rotation of the Earth and his Natural History and Theory of the Heavens. pp. 157–165. J Maclehose Publishers, Glasgow, 1900. Reprinted: 1968, ed. Willy Ley (Greenwood, NY), and 1969, ed. Milton K. Munitz (University of Michigan Press) (1754)]
  26. Karato S.-I.: Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, UK (2007)Google Scholar
  27. Kaula W.M.: Analysis of gravitational and geometric aspects of geodetic utilisation of satellites. Geophys. J. 5, 104–133 (1961)MATHCrossRefADSGoogle Scholar
  28. Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–684 (1964)CrossRefADSGoogle Scholar
  29. Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Blaisdell Publishing Co, Waltham MA (1966). (Re-published in 2006 by Dover. ISBN: 0486414655)Google Scholar
  30. Kaula W M.: An Introduction to Planetary Physics. Wiley, NY (1968)Google Scholar
  31. Kozai Y.: The motion of a close earth satellite. Astron. J. 64, 367–377 (1959a)CrossRefADSMathSciNetGoogle Scholar
  32. Kozai Y.: On the effects of the Sun and the Moon upon the motion of a close Earth satellite. SAO Spec. Rep. 22, 7–10 (1959b)ADSGoogle Scholar
  33. Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)CrossRefADSMathSciNetGoogle Scholar
  34. Krasinsky G.A.: Dynamical history of the Earth-Moon system. Celest. Mech. Dyn. Astron. 84, 27–55 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  35. Krasinsky G.A.: Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: mathematical model. Celest. Mech. Dyn. Astron. 96, 169–217 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  36. Lambeck K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge, UK (1980)Google Scholar
  37. MacDonald G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)CrossRefADSGoogle Scholar
  38. Mignard F.: The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)MATHCrossRefADSGoogle Scholar
  39. Mignard F.: The evolution of the lunar orbit revisited II. Moon Planets 23, 185–201 (1980)CrossRefADSGoogle Scholar
  40. Neron de Surgy O., Laskar J.: On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997)ADSGoogle Scholar
  41. Peale S.: The free precession and libration of Mercury. Icarus 178, 4–18 (2005)CrossRefADSGoogle Scholar
  42. Roche, E.A.: Mémorie sur la figure d’une masse fluide, soumise a l’attraction d’un point éloingné.” Académie des Sciences et Lettres de Montpellier. Mémories de la Section des Sciences., Tome 1(3), 243–262 (1849) http://gallica.bnf.fr/ark:/12148/bpt6k209711r
  43. Singer S.F.: The origin of the Moon and geophysical consequences. Geophys. J. R. Astron. Soc. 15, 205–226 (1968)Google Scholar
  44. Taff L.G.: Celestial Mechanics: A Computational Guide for the Practitioner, pp. 332–340. Wiley, NY (1985)Google Scholar
  45. Thomson W.: On the rigidity of the Earth. Philos. Trans. R. Soc. London 153, 573–582 (1863) http://www.jstor.org/view/02610523/ap000064/00a00270 Google Scholar
  46. Tisserand, F.-F. (1896) Traité de Mécanique Céleste. Tome I. Perturbations des planètes d’après la méthode de la variation des constantes arbitraires. Gauthier Villars, Paris 1896. Chapitre X.Google Scholar
  47. Touma J., Wisdom J.: Evolution of the Earth-Moon system. Astron. J. 108, 1943–1961 (1994)CrossRefADSGoogle Scholar
  48. Williams J.G., Benson G.S.: Resonances in the Neptune-Pluto System. Astron. J. 71, 167–176 (1971)CrossRefADSGoogle Scholar
  49. Williams J.G., Boggs D.H., Yoder C.F., Ratcliff J.T., Dickey J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 106(E11), 27933–27968 (2001)CrossRefADSGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.US Naval ObservatoryWashingtonUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations