Celestial Mechanics and Dynamical Astronomy

, Volume 105, Issue 1–3, pp 179–195 | Cite as

Non-Keplerian orbits for electric sails

  • Giovanni Mengali
  • Alessandro A. Quarta
Original Article


An electric sail is capable of guaranteeing the fulfilment of a class of trajectories that would be otherwise unfeasible through conventional propulsion systems. In particular, the aim of this paper is to analyze the electric sail capabilities of generating a class of displaced non-Keplerian orbits, useful for the observation of the Sun’s polar regions. These orbits are characterized through their physical parameters (orbital period and solar distance) and the spacecraft propulsion capabilities. A comparison with a solar sail is made to highlight which of the two systems is more convenient for a given mission scenario. The optimal (minimum time) transfer trajectories towards the displaced orbits are found with an indirect approach.


Electric sail Displaced non-Keplerian orbit Trajectory optimization Solar sail 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baoyin H., Mcinnes C.R.: Solar sail halo orbits at the Sun-Earth artificial L1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006). doi: 10.1007/s10569-005-4626-3 zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. Brown, C.D.: Spacecraft mission design, pp. 71–73. AIAA Education Series (1992)Google Scholar
  3. Bryson A.E., Ho Y.C.: Applied Optimal Control, Chap. 2, pp. 71–89. Hemisphere Publishing Corporation, New York, NY (1975)Google Scholar
  4. Hughes G.W., McInnes C.R.: Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. J. Guid. Control Dyn. 25(3), 602–604 (2002)CrossRefGoogle Scholar
  5. Janhunen P., Sandroos A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25(3), 755–767 (2007)ADSCrossRefGoogle Scholar
  6. Kim M., Hall C.D.: Symmetries in the optimal control of solar sail spacecraft. Celest. Mech. Dyn. Astron. 92(4), 273–293 (2005). doi: 10.1007/s10569-004-2530-x zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. Kirpichnikov S.N., Kirpichnikova E.S., Polyakhova E.N., Shmyrov A.S.: Planar heliocentric roto- translatory motion of a spacecraft with a solar sail of complex shape. Celest. Mech. Dyn. Astron. 63(3–4), 255–269 (2004). doi: 10.1007/BF00692290 ADSGoogle Scholar
  8. Koblik V., Polyakhova E., Sokolov L.: Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys. Celest. Mech. Dyn. Astron. 86(1), 59–80 (2003). doi: 10.1023/A:1023626917595 zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. McInnes C.R.: The existence and stability of families of displacement two-body orbits. Celest. Mech. Dyn. Astron. 67(2), 167–180 (1997). doi: 10.1023/A:1008280609889 zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. McInnes C.R.: Passive control of displaced solar sail orbits. J. Guid. Control Dyn. 21(6), 975–982 (1998)CrossRefGoogle Scholar
  11. McInnes C.R.: Solar sailing: technology, dynamics and mission applications. Springer-Praxis series in space science and technology, pp. 175–196. Springer-Verlag, Berlin (1999)Google Scholar
  12. McInnes C.R., Brown J.C.: The dynamics of solar sails with a non-point source of radiation pressure. Celest. Mech. Dyn. Astron. 49(3), 249–264 (1990). doi: 10.1007/BF00049416 CrossRefADSGoogle Scholar
  13. McInnes C.R., Simmons J.F.L.: Solar sail halo orbits. Part I—heliocentric case. J. Spacecr. Rockets 29(4), 466–471 (1992)CrossRefADSGoogle Scholar
  14. Mengali G., Quarta A.A.: Optimal control laws for axially symmetric solar sails. J. Spacecr. Rockets 42(6), 1130–1133 (2005a)CrossRefADSGoogle Scholar
  15. Mengali G., Quarta A.A.: Time-optimal three-dimensional trajectories for solar photon thruster spacecraft. J. Spacecr. Rockets 42(2), 379–381 (2005b)CrossRefADSGoogle Scholar
  16. Mengali G., Quarta A. A.: Compound solar sail with optical properties: models and performance. J. Spacecr. Rockets 43(1), 239–245 (2006)CrossRefADSGoogle Scholar
  17. Mengali G., Quarta A.A.: Optimal heliostationary missions of high-performance sailcraft. Acta Astronaut. 60(8–9), 676–683 (2007). doi: 10.1016/j.actaastro.2006.07.018 CrossRefADSGoogle Scholar
  18. Mengali G., Quarta A.A., Circi C., Dachwald B.: Refined solar sail force model with mission application. J. Guid. Control Dyn. 30(2), 512–520 (2007). doi: 10.2514/1.24779 CrossRefGoogle Scholar
  19. Mengali G., Quarta A.A., Janhunen P.: Considerations of electric sailcraft trajectory design. J. Br. Interplanet. Soc. 61(8), 326–329 (2008a)Google Scholar
  20. Mengali G., Quarta A.A., Janhunen P.: Electric sail performance analysis. J. Spacecr. Rockets 45(1), 122–129 (2008b). doi: 10.2514/1.31769 CrossRefGoogle Scholar
  21. Racca G.D.: New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system. Celest. Mech. Dyn. Astron. 85(1), 1–24 (2004). doi: 10.1023/A:1021787311087 CrossRefMathSciNetADSGoogle Scholar
  22. Stengel R.F.: Stochastic Optimal Control: Theory and Applications, pp. 242–243. Wiley, New York, NY (1986)zbMATHGoogle Scholar
  23. Van Der Ha J.C., Modi V.J.: Long-term evaluation of three-dimensional heliocentric solar sail trajectories with arbitrary fixed sail setting. Celest. Mech. Dyn. Astron. 19(2), 113–138 (1979). doi: 10.1007/BF01796085 zbMATHGoogle Scholar
  24. Wenzel K.-P., Marsden R.G., Page D.E., Smith E.J.: The Ulysses mission. Astron. Astrophys. Suppl. Ser. 92(2), 207–219 (1992)ADSGoogle Scholar
  25. Wie B.: Thrust vector control analysis and design for solar-sail spacecraft. J. Spacecr. Rockets 44(3), 545–557 (2007). doi: 10.2514/1.23084 CrossRefADSGoogle Scholar
  26. Wright J.L.: Space Sailing, pp. 223–226. Gordon and Breach Science Publisher, Berlin (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria AerospazialeUniversity of PisaPisaItaly

Personalised recommendations