The stability of vertical motion in the N-body circular Sitnikov problem

  • T. Bountis
  • K. E. Papadakis
Original Article


We present results about the stability of vertical motion and its bifurcations into families of 3-dimensional (3D) periodic orbits in the Sitnikov restricted N-body problem. In particular, we consider ν = N − 1 equal mass primary bodies which rotate on a circle, while the Nth body (of negligible mass) moves perpendicularly to the plane of the primaries. Thus, we extend previous work on the 4-body Sitnikov problem to the N-body case, with N = 5, 9, 15, 25 and beyond. We find, for all cases we have considered with N ≥ 4, that the Sitnikov family has only one stability interval (on the z-axis), unlike the N = 3 case where there is an infinity of such intervals. We also show that for N = 5, 9, 15, 25 there are, respectively, 14, 16, 18, 20 critical Sitnikov periodic orbits from which 3D families (no longer rectilinear) bifurcate. We have also studied the physically interesting question of the extent of bounded dynamics away from the z-axis, taking initial conditions on x, y planes, at constant z(0) = z 0 values, where z 0 lies within the interval of stable rectilinear motions. We performed a similar study of the dynamics near some members of 3D families of periodic solutions and found, on suitably chosen Poincaré surfaces of section, “islands” of ordered motion, while away from them most orbits become chaotic and eventually escape to infinity. Finally, we solve the equations of motion of a small mass in the presence of a uniform rotating ring. Studying the stability of the vertical orbits in that case, we again discover a single stability interval, which, as N grows, tends to coincide with the stability interval of the N-body problem, when the values of the density and radius of the ring equal those of the corresponding system of N − 1 primary masses.


N-body problem Sitnikov motions Stability 3-dimensional periodic orbits Ordered motion Escape regions Uniform rotating ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belbruno E., Llibre J., Ollé M. (1994) On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astron. 60: 99zbMATHCrossRefADSGoogle Scholar
  2. Bennett A. (1965) Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4: 177CrossRefADSGoogle Scholar
  3. Broucke R.A., Elipe A. (2005) The dynamics of orbits in a potential field of a solid circular ring. Regul. Chaotic Dyn. 10: 129zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. Corbera M., Llibre J. (2000) Periodic orbits of the Sitnikov problem via a Poincaré map. Celest. Mech. Dyn. Astron. 77: 273zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. Danby J.M.A. (1964) Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69: 165CrossRefADSMathSciNetGoogle Scholar
  6. Dvorak R. (1993) Numerical results to the Sitnikov-problem. Celest. Mech. Dyn. Astron. 56: 71CrossRefADSGoogle Scholar
  7. Faruque S.B. (2003) Solution of the Sitnikov problem. Celest. Mech. Dyn. Astron. 87: 353zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. Hadjidemetriou J. (1975) The stability of periodic orbits in the three-body problem. Celest. Mech. 12: 255zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Hagel J. (1992) A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astron. 53: 267zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Hagel J., Lhotka C. (2005) A high order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 93: 201zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. Hénon M. (1973) Vertical stability of periodic orbits in the restricted problem I Equal masses. Astron. Astrophys. 28: 415ADSGoogle Scholar
  12. Jie L., Sun Y.-S. (1990) On the Sitnikov problem. Celest. Mech. Dyn. Astron. 49: 285zbMATHCrossRefADSGoogle Scholar
  13. Jiménez-Lara L., Escalona-Buendía A. (2001) Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astron. 79: 97zbMATHCrossRefADSGoogle Scholar
  14. Kalvouridis T.J. (2001) Zero velocity surfaces in the three-dimensional ring problem of N+1 bodies. Celest. Mech. Dyn. Astron. 80: 113CrossRefADSMathSciNetGoogle Scholar
  15. Llibre J., Simó C. (1990) Estudio cualitativo del problema de Sitnikov. Pub. Mat. U.A.B. 18: 49Google Scholar
  16. Luk’yanov L.G. (2005) Energy conservation in the restricted elliptical three-body problem. Astron. Rep. 49: 1018CrossRefADSGoogle Scholar
  17. MacMillan W.D. (1913) An integrable case in the restricted problem of three bodies. Astron. J. 27: 285Google Scholar
  18. Marchal C. (1990) The three body problem, Studies in Astronautics, vol. 4. Elsevier, AmsterdamGoogle Scholar
  19. Markellos V.V., Goudas C.L., Katsiaris G.A. (1981) Investigating the universe. 319, D. Reidel Publ. Co., Dordrecht, HollandGoogle Scholar
  20. Moser J. (1973) Stable and random motions in dynamical systems, Annals of mathematics studies. 77, Princeton Univ. Press and University of Tokio Press, Princeton, New JerseyGoogle Scholar
  21. Moulton F.R. (1914) On the stability of direct and retrograde satellite orbits. Monthly Notices Roy. Astron. Soc. 75: 40ADSGoogle Scholar
  22. Pavanini, G.: Sopra una nuova categoria di soluzioni periodiche nel problema dei tre corpi. Annali di Mathematica Serie III, Tomo XIII (1907)Google Scholar
  23. Pedersen P. (1952) Stabilitätsuntersuchungen im restringierten Vierkörperproblem. Dan. Mat. Fys. Medd. 26: 16Google Scholar
  24. Perdios E.A., Markellos V.V. (1988) Stability and bifurcations of Sitnikov motions. Celest. Mech. 42: 187ADSMathSciNetGoogle Scholar
  25. Perdios E.A. (2007) The manifold of families of 3D periodic orbits associated to Sitnikov motions in the restricted three-body problem. Celest. Mech. Dyn. Astron. 99: 85zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. Simo C. (1978) Relative equilibrium solutions in the four body problem. Celest. Mech. 18: 165zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. Sitnikov K. (1960) Existence of oscillating motions for the three-body problem. Dokl. Akad. Nauk. USSR 6: 303MathSciNetGoogle Scholar
  28. Soulis P.S., Bountis T., Dvorak R. (2007) Stability of motion in the Sitnikov problem. Celest. Mech. Dyn. Astron. 99: 129zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. Soulis P.S., Papadakis K.E., Bountis T. (2008) Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100: 251CrossRefADSMathSciNetGoogle Scholar
  30. Skokos Ch. (2001) Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34: 10029zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. Skokos Ch., Antonopoulos Ch., Bountis T.C., Vrahatis M.N. (2004) Detecting order and chaos on Hamiltonian systems by the SALI method. J. Phys. A: Math. Gen. 37: 6269CrossRefADSMathSciNetGoogle Scholar
  32. Wintner A. (1947) The analytical foundations of celestial mechanics. 151 Princeton Univ Press, Princeton, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Center for Research and Applications of Nonlinear SystemsUniversity of PatrasPatrasGreece
  2. 2.Division of Applied Mathematics and Mechanics, Department of Engineering SciencesUniversity of PatrasPatrasGreece

Personalised recommendations