Celestial Mechanics and Dynamical Astronomy

, Volume 105, Issue 1–3, pp 197–210 | Cite as

Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP

Original Article

Abstract

We consider the planar restricted three-body problem and the collinear equilibrium point L3, as an example of a center × saddle equilibrium point in a Hamiltonian with two degrees of freedom. We explore numerically the existence of symmetric and non-symmetric homoclinic orbits to L3, when varying the mass parameter μ. Concerning the symmetric homoclinic orbits (SHO), we study the multi-round, m-round, SHO for m ≥ 2. More precisely, given a transversal value of μ for which there is a 1-round SHO, say μ1, we show that for any m ≥ 2, there are countable sets of values of μ, tending to μ1, corresponding to m-round SHO. Some comments on related analytical results are also made.

Keywords

Invariant manifolds Multi-round homoclinic orbits Restricted three-body problem Symmetric homoclinic orbits Homoclinic connection to L3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrabés E., Mikkola S.: Families of periodic horseshoe orbits in the restricted three-body problem. Astron. Astrophys. 432, 1115–1129 (2005)MATHCrossRefADSGoogle Scholar
  2. Barrabés, E., Mondelo, J.M., Ollé, M.: Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Preprint (2008)Google Scholar
  3. Barrabés E., Ollé M.: Invariant manifolds of L 3 and horseshoe motion in the restricted three-body problem. Nonlinearity 19, 2065–2089 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  4. Bernard P., Grotta Ragazzo C., Santoro Salomão P.A.: Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with two degrees of freedom. Astérisque 286(xviii–xix), 151–165 (2003)Google Scholar
  5. Canalias, E.: Contribution to libration orbit mission design using hyperbolic invariant manifolds. Ph.D. thesis, Universitat Politécnica de Catalunya (2007)Google Scholar
  6. Canalias E., Masdemont J.J.: Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the Sun–Earth and Earth–Moon systems. Discrete Contin. Dyn. Syst. 14(2), 261–279 (2006)MATHMathSciNetGoogle Scholar
  7. Connors M., Chodas P., Mikkola S., Wiegert P., Veillet C., Innanen K.: Discovery of an asteroid and quasi-satellite in an earth-like horseshoe orbit. Meteorit. Planet. Sci. 37, 1435–1441 (2002)ADSCrossRefGoogle Scholar
  8. Devaney R.: Blue sky catastrophes in reversible and Hamiltonian systems. Ind. Univ. Math. 26, 247–263 (1977)MATHCrossRefMathSciNetGoogle Scholar
  9. Farrés, A.: Stability regions around the Lagrangian points in the RTBP and their boundaries. Master’s thesis, Universitat de Barcelona (2005)Google Scholar
  10. Font, J.: The role of homoclinic and heteroclinic orbits in two-degrees of freedom Hamiltonian systems. Ph.D. thesis, University of Barcelona (1999)Google Scholar
  11. Gómez G., Masdemont J.J.: Some zero cost transfers between libration point orbits. Adv. Astronaut. Sci. 105, 1199–1216 (2000)Google Scholar
  12. Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Dynamics and mission design near libration point orbits—Volume 4: Advanced methods for triangular points. World Scientific. Reprint of ESA Report. Study of Poincaré Maps for Orbits Near Lagrangian Points, 1993 (2001)Google Scholar
  13. Gómez G., Masdemont J.J., Mondelo J.M.: Libration point orbits: a survey from the dynamical point of view. In: Gómez, G., Lo, M.W., Masdemont, J.J. (eds) Libration Point Orbits and Applications, World Scientific, New Jersey (2003)Google Scholar
  14. Gómez G., Koon W.S., Lo M.W., Marsden J.E., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  15. Gómez G., Marcote M., Mondelo J.M.: The invariant manifold structure of the spatial Hill’s problem. Dynamical systems. Int. J. 20(1), 115–147 (2005)MATHGoogle Scholar
  16. Grotta Ragazzo C.: Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers. Comm. Pure Appl. Math. 50(2), 105–147 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. Hadjidemetriou J.D.: On periodic orbits and resonances in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 102, 69–82 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  18. Henrard J.: Proof of a conjecture of E. Strömgren. Celest. Mech. Dyn. Astron. 7, 449–457 (1973)MATHMathSciNetGoogle Scholar
  19. Henrard J., Navarro J.F.: Families of periodic orbits emanating from homoclinic orbits in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 89, 285–304 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  20. Howell K.C., Barden B.T., Wilson R.S., Lo M.W.: Trajectory design using a dynamical systems approach with application to GENESIS. Adv. Astronaut. Sci. 97, 1665–1684 (1998)Google Scholar
  21. Kinoshita H., Nakai K.: Quasi-satellites of Jupiter. Celest. Mech. Dyn. Astron. 98, 181–189 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  22. Koltsova O.Y.: Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium. Regul. Chaotic Dyn. 8(2), 191–200 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  23. Koltsova O.Y., Lerman L.M.: Periodic and homoclinic orbits in a two-parameter unfolding of a hamiltonian system with a homoclinic orbit to a saddle-center. Int. J. Bifurc. Chaos 5(2), 397–408 (1995)MATHCrossRefMathSciNetGoogle Scholar
  24. Koltsova O.Y, Lerman L., Delshams A., Gutiérrez P.: Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium. Phys. D 201(3–4), 268–290 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)MATHCrossRefMathSciNetADSGoogle Scholar
  26. Lerman, L.M.: Hamiltonian systems with loops of a separatrix of a saddle-center. Sel. Math. Soviet. 10(3), 297–306 (1991). Selected translations [translation of methods of the qualitative theory of differential equations (Russian), 89–103, Gor′kov. Gos. Univ., Gorki, 1987]Google Scholar
  27. Llibre J., Martínez R., Simó C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2in the restricted three-body problem. J. Differ. Equ. 58(1), 104–156 (1985)MATHCrossRefGoogle Scholar
  28. Llibre J., Ollé M.: The motion of Saturn coorbital satellites in the restricted three-body problem. Astron. Astrophys. 378(3), 1087–1099 (2001)MATHCrossRefADSGoogle Scholar
  29. McGehee, R.P.: Some homoclinic orbits for the restricted three-body problem. Ph.D. thesis, University of Wisconsin (1969)Google Scholar
  30. Mielke A., Holmes P., O’Reilly O.: Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J. Dyn. Differ. Equ. 4(1), 95–126 (1992)MATHCrossRefMathSciNetGoogle Scholar
  31. Parker J.S., Lo M.W.: Shoot the moon 3D. Adv. Astronaut. Sci. 123, 2067–2086 (2006)Google Scholar
  32. Schanzle A.J.: Horseshoe-shaped orbits in the Jupiter–Sun restricted problem. Astron. J. 72(2), 149–157 (1967)CrossRefADSGoogle Scholar
  33. Simó, C.: Boundaries of stability. talk given at Univ. de Barcelona, Jun 3. Available at http://maia.ub.edu/dsg/ (2006)
  34. Szebehely V.: Theory of orbits. The restricted problem of three bodies. Academic Press Inc., New York (1967)Google Scholar
  35. Taylor D.B.: Horseshoe periodic orbits in the restricted problem of three bodies for a Sun–Jupiter mass ratio. Astron. Astrophys. 103(2), 288–294 (1981)MATHADSGoogle Scholar
  36. Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer assisted proof. Comm. Math. Phys. 234(1), 37–75 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  37. Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem .II. Comm. Math. Phys. 259(3), 561–576 (2005)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Departament d’Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain
  2. 2.IEEC and Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations