Celestial Mechanics and Dynamical Astronomy

, Volume 102, Issue 4, pp 327–353 | Cite as

Nonlinear dynamical analysis for displaced orbits above a planet

Original Article


Nonlinear dynamical analysis and the control problem for a displaced orbit above a planet are discussed. It is indicated that there are two equilibria for the system, one hyperbolic (saddle) and one elliptic (center), except for the degenerate hzmax, a saddle-node bifurcation point. Motions near the equilibria for the nonresonance case are investigated by means of the Birkhoff normal form and dynamical system techniques. The Kolmogorov–Arnold–Moser (KAM) torus filled with quasiperiodic trajectories is measured in the τ 1 and τ 2 directions, and a rough algorithm for calculating τ 1 and τ 2 is proposed. A general iterative algorithm to generate periodic Lyapunov orbits is also presented. Transitions in the neck region are demonstrated, respectively, in the nonresonance, resonance, and degradation cases. One of the important contributions of the paper is to derive necessary and sufficiency conditions for stability of the motion near the equilibria. Another contribution is to demonstrate numerically that the critical KAM torus of nontransition is filled with the (1,1)-homoclinic orbits of the Lyapunov orbit.


Displaced orbits Solar sail Nonlinear dynamics Bifurcation Quasiperiodic Homoclinic orbits KAM Torus Periodic Lyapunov orbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold V.I., Kozlov V.V., Neishtadt A.I. (1997) Mathematical Aspects of Classical and Celestial Mechanics. 2nd edn. Springer–Verlag, NYMATHGoogle Scholar
  2. Baoyin H., McInnes C. (2006) Solar Sail Halo Orbits at the Sun-Earth Artificial L1 Point. Celest. Mech. Dyn. Astron. 94: 155–171. doi:10.1007/s10569-005-4626-3 MATHCrossRefADSMathSciNetGoogle Scholar
  3. Barden, B.T., Howell, K.C.: Application of dynamical systems theory to trajectory design for a libration point mission. Paper No. AIAA-96-3602-CP (1996)Google Scholar
  4. Bookless J., McInnes C. (2006) Dynamics and control of displaced periodic orbits using solar-sail propulsion. J. Guid. Control Dyn. 29(3): 527–537. doi:10.2514/1.15655 CrossRefGoogle Scholar
  5. Bookless, J., McInnes, C.: Control of Lagrange point orbits using solar sail propulsion. IAC-05-C1.6.03 (2006b)Google Scholar
  6. Celletti A., Chierchia L. (2006) KAM tori for N-body problems: a brief history. Celest. Mech. Dyn. Astron. 95: 117–139. doi:10.1007/s10569-005-6215-x MATHCrossRefADSMathSciNetGoogle Scholar
  7. Conley C. (1963) Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16: 732–746. doi:10.1137/0116060 CrossRefMathSciNetGoogle Scholar
  8. Danckowicz H. (1994) Some special orbits in the two-body problem with radiation pressure. Celest. Mech. Dyn. Astron. 58(4): 353–370. doi:10.1007/BF00692010 CrossRefADSGoogle Scholar
  9. Golubitsky M., Marsden J.E. (1983) The Morse lemma in infinite dimensions via singularity theory. SIAM J. Math. Anal. 14(6): 1037–1044. doi:10.1137/0514083 MATHCrossRefMathSciNetGoogle Scholar
  10. Koon W.S., Lo M.W., Marsden J.E., Ross S.D. (2000) Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2): 427–469. doi:10.1063/1.166509 MATHCrossRefADSMathSciNetGoogle Scholar
  11. Llibre J., Martinez R., Simó C. (1985) Transversality of the invariant manifolds associated to Lyapunov family of periodic orbits near L 2 in the restricted three-body problem. J. Differ. Equ. 58: 104–156. doi:10.1016/0022-0396(85)90024-5 MATHCrossRefGoogle Scholar
  12. McInnes C.R. (1999) Solar Sailing: Technology, Dynamics and Mission Applications. Springer–Verlag, LondonGoogle Scholar
  13. Meyer, K.R., Hall, R.: Hamiltonian Mechanics and the n-Body Problem. Springer-Verlag, Applied Mathematical Sciences (1992)Google Scholar
  14. Moser J. (1958) On the generalization of a theorem of Liapunov. Commun. Pure Appl. Math. 11: 257–271. doi:10.1002/cpa.3160110208 MATHCrossRefGoogle Scholar
  15. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Texts Appl. Math. Sci. 2, Springer–Verlag (1990)Google Scholar
  16. Xu,Ming., Xu, Shijie. (2007) J 2 invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5): 585–595. doi:10.1007/s10409-007-0097-y CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of AstronauticsBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations