Fuzzy characterization of near-earth-asteroids

  • Florian Freistetter
Original Article


Due to close encounters with the inner planets, Near-Earth-Asteroids (NEAs) can have very chaotic orbits. Because of this chaoticity, a statistical treatment of the dynamical properties of NEAs becomes difficult or even impossible. We propose a new way to classify NEAs by using methods from Fuzzy Logic. We demonstrate how a fuzzy characterization of NEAs can be obtained and how a subsequent analysis can deliver valid and quantitative results concerning the long-term dynamics of NEAs.


Near-Earth-Asteroids Dynamics Chaos Fuzzy Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asghari N., Broeg C., Carone L., Casas-Miranda R., Castro Palacio J.C., Csillik I., Dvorak R., Freistetter F., Hadjivantsides G., Hussmann H., Khramova A., Khristoforova M., Khromova I., Kitiashivilli I., Kozlowski S., Laakso T., Laczkowski T., Lytvinenko D., Miloni O., Morishima R., Moro-Martin A., Paksyutov V., Pal A., Patidar V., Pečnik B., Peles O., Pyo J., Quinn T., Rodriguez A., Romano C., Saikia E., Stadel J., Thiel M., Todorovic N., Veras D., Vieira Neto E., Vilagi J., von Bloh W., Zechner R., Zhuchkova E.: Stability of terrestrial planets in the habitable zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208. Astron. Astrophys. 426, 353–365 (2004). doi: 10.1051/0004-6361:20040390 astro-ph/0403152CrossRefADSGoogle Scholar
  2. Dvorak R., Freistetter F.: Dynamical evolution and collisions of asteroids with the earth. Planet. Space. Sci. 49, 803–809 (2001)CrossRefADSGoogle Scholar
  3. Dvorak R., Pilat-Lohinger E.: On the dynamical evolution of the Atens and the Apollos. Planet. Space. Sci. 47, 665–677 (1999)CrossRefADSGoogle Scholar
  4. Freistetter, F.: A new dynamical classification of asteroids. Ph.D thesis, University of Vienna (2004)Google Scholar
  5. Hanslmeier A., Dvorak R.: Numerical Integration with Lie Series. Astron. Astrophys. 132, 203–207 (1984)zbMATHADSMathSciNetGoogle Scholar
  6. Kinoshita H., Nakai H.: General solution of the Kozai mechanism. Celest. Mech. Dyn. Astron. 98, 67–74 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)CrossRefADSMathSciNetGoogle Scholar
  8. Lichtenegger H.: The dynamics of bodies with variable masses. Celest. Mech. Dyn. Astron. 34, 357–368 (1984)zbMATHMathSciNetGoogle Scholar
  9. Milani A., Carpino M., Hahn G., Nobili A.M.: Dynamics of planet-crossing asteroids—Classes of orbital behavior. Icarus. 78, 212–269 (1989). doi: 10.1016/0019-1035(89)90174-7 CrossRefADSGoogle Scholar
  10. Shoemaker E.M., Williams J.G., Helin E.F., Wolfe R.F.: Earth-crossing asteroids—Orbital classes, collision rates with earth, and origin. In: Geherels, T. (eds) Asteroids, pp. 253–282. University of Arizona Press, Tucson (1979)Google Scholar
  11. Zadeh L.: The concept of a Linguistic variable and its application to approximation reasoning—I. Inf Sci. 8, 199–249 (1965)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Astrophysikalisches Institute and Universitätssternwarte, Friedrich-Schiller-UniversitätJenaGermany

Personalised recommendations