Planetary perturbations on Mercury’s libration in longitude

Original Article


Two space missions dedicated to Mercury (MESSENGER and BepiColombo) aim at understanding its rotation and confirming the existence of a liquid core. This double challenge requires much more accurate models for the spin-orbit resonant rotation of Mercury. The purpose of this paper is to introduce planetary perturbations on Mercury’s rotation using an analytical method and to analyse the influence of the perturbations on the libration in longitude. Applying a perturbation theory based on the Lie triangle, we were able to re-introduce short periodic terms into the averaged Hamiltonian and to compute the evolution of the rotational variables. The perturbations on Mercury’s forced libration in longitude mainly come from the orbital motion of Mercury (with an amplitude around 41 arcsec that depends on the momenta of inertia). It is completed by various effects from Jupiter (11.86 and 5.93 year-periods), Venus (with a 5.66 year-period), Saturn (14.73 year-period), and the Earth (6.58 year-period). The amplitudes of the oscillations due to Jupiter and Venus are approximately 33% and 10% of those from the orbital motion of Mercury and the amplitudes of the oscillations due to Saturn and the Earth are approximately 3% and 2%. We compare the analytical results with the solution obtained from the spin-orbit numerical model SONYR.


Mercury’s libration Mercury rotation Planetary perturbations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager T.B.: The mass, gravity field and ephemeris of Mercury. Icarus 71, 337–349 (1987)CrossRefADSGoogle Scholar
  2. Anselmi A., Scoon G.E.N.: BepiColombo, ESA’s Mercury Cornerstone mission. Planet. Space Sci. 49, 1409 (2001)CrossRefADSGoogle Scholar
  3. Bois E., Vokrouhlicky D.: Relativistic spin effects in the Earth-Moon system. Astron. Astrophys. 300, 559–567 (1995)ADSGoogle Scholar
  4. Bois, E.: Connaissance de la libration lunaire à l’ère de la télémétrie laser-Lune. Comptes Rendus de l’Académie des Sciences, tome 1, Série IV, 809–823 (2000)Google Scholar
  5. Brouwer D., Clemence G. M.: Methods of Celestial Mechanics. Academic Press, New York (1961)Google Scholar
  6. Colombo G.: Rotational period of the planet Mercury. Nature 208, 575 (1965)CrossRefADSGoogle Scholar
  7. Deprit A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)CrossRefADSMathSciNetMATHGoogle Scholar
  8. D’Hoedt S., Lemaître A.: The spin-orbit resonant motion of Mercury: a two-degree of freedom Hamiltonian model. Celest. Mech. Dyn. Astron. 89, 267–283 (2004)CrossRefMATHGoogle Scholar
  9. D’Hoedt S., Lemaître A.: The Spin-orbit resonance of Mercury: a Hamiltonian approach. In: Kurtz, D.W.(eds) Proceedings of IAU Colloquium 196, pp. 263–270. Cambridge University Press, Cambridge (2005)Google Scholar
  10. D’Hoedt S., Lemaître A., Rambaux N.: Note on Mercury’s rotation: the four equilibria of the Hamiltonian model. Celest. Mech. Dyn. Astron. 96, 253–258 (2006)CrossRefMATHGoogle Scholar
  11. Fienga A., Simon J.-L.: Analytical and numerical studies of asteroid perturbations on solar system planet dynamics. Astron. Astrophys. 429, 361–367 (2004)CrossRefADSGoogle Scholar
  12. Henrard J.: On a perturbation theory using Lie transforms. Celest. Mech. 3, 107–120 (1970)CrossRefADSMathSciNetMATHGoogle Scholar
  13. Henrard J.: Algebraic manipulation on computers for lunar and planetary theories. In: Kovalevsky, J., Brumberg, V.(eds) Proceedings of the IAU Symposium, 114, pp. 59–62. Reidel, Dordrecht (1986)Google Scholar
  14. Hori G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)ADSGoogle Scholar
  15. Lemaître A., D’Hoedt S., Rambaux N.: The 3:2 spin-orbit resonant motion of Mercury. Celest. Mech. Dyn. Astron. 95, 213–224 (2006)CrossRefADSMATHGoogle Scholar
  16. Margot J.L., Peale S.J., Jurgens R.F., Slade M.A., Holin I.V.: Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007)CrossRefADSGoogle Scholar
  17. Peale S.J., Yseboodt M., Margot J.-L.: Long-period forcing of Mercury’s libration in longitude. Icarus 187, 365–373 (2007)CrossRefADSGoogle Scholar
  18. Pettengill G.H., Dyce R.B.: A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965)CrossRefADSGoogle Scholar
  19. Rambaux N., Bois E.: Theory of the Mercury’s spin-orbit motion and analysis of its main librations. Astron. Astrophys. 413, 381 (2004)CrossRefADSGoogle Scholar
  20. Rambaux N., Lemaître A., D’Hoedt S.: Coupled rotational motion of Mercury. Astron. Astrophys. 470, 741–747 (2007)CrossRefADSMATHGoogle Scholar
  21. Solomon S.C. et al.: The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Julien Dufey
    • 1
  • Anne Lemaître
    • 1
  • Nicolas Rambaux
    • 1
    • 2
  1. 1.Dynamical Systems – Department of MathematicsUniversity of NamurNamurBelgium
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations