Celestial Mechanics and Dynamical Astronomy

, Volume 99, Issue 4, pp 293–305 | Cite as

Seven-body central configurations: a family of central configurations in the spatial seven-body problem

  • Marshall Hampton
  • Manuele SantopreteEmail author
Original Article


The main result of this paper is the existence of a new family of central configurations in the Newtonian spatial seven-body problem. This family is unusual in that it is a simplex stacked central configuration, i.e the bodies are arranged as concentric three and two dimensional simplexes.


Central configurations Relative equilibria N-body problem Celestial mechanics 

Mathematics Subject Classification (2000)

70F15 70F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albouy A. (1993). Integral manifolds of the N-body problem. Invent. math. 114: 463–488 zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Albouy A. (2003). On a paper of Moeckel on central configurations. Reg. Chaot. Dyn. 8: 133–142 zbMATHCrossRefMathSciNetGoogle Scholar
  3. Hagihara Y. (1970). Celestial Mechanics, vol. 1, chap. 3. The MIT Press, Cambridge Google Scholar
  4. Hampton M. (2005). Stacked central configurations: new examples in the planar five-body problem. Nonlinearity 18: 2299–2304 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Lei J. and Santoprete M. (2006). Rosette central configurations, degenerate central configurations and bifurcations. Cel. Mech Dynam. Astron 94: 271–287 CrossRefADSMathSciNetGoogle Scholar
  6. Meyer G. (1933). Solutions voisines des solutions de Lagrange dans le probleme des n corps. Ann. Obs. Bordeaux linebreak 17: 77–252 Google Scholar
  7. Saari D. (1980). On the role and properties of n-body central configurations. Celestial Mech. 21: 9–20 zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. Sekiguchi M. (2004). Bifurcations of central configurations in the 2N+1 body problem. Cel. Mech. Dynam. Astron 90: 355–360 zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Sommerville D. (1958). An Introduction to the Geometry of N Dimensions. Dover, New York zbMATHGoogle Scholar
  10. Wintner A. (1941). The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of Minnesota—DuluthDuluthUSA
  2. 2.Department of MathematicsWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations