Celestial Mechanics and Dynamical Astronomy

, Volume 99, Issue 4, pp 253–260 | Cite as

Relations between integrable systems in plane and curved spaces

Original Article

Abstract

We consider trajectory isomorphisms between various integrable systems on an n-dimensional sphere Sn and a Euclidean space \({\mathbb{R}}^n\) . Some of the systems are classical integrable problems of Celestial Mechanics in plane and curved spaces. All the systems under consideration have an additional first integral quadratic in momentum and can be integrated analytically by using the separation of variables. We show that some integrable problems in constant curvature spaces are not essentially new from the viewpoint of the theory of integration, and they can be analyzed using known results of classical Celestial Mechanics.

Keywords

Integrable systems Euclidean spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albouy, A.: The underlying geometry of the fixed centers problems. In: Brezis, H., Chang, K.C., Li, S.J., Rabinowitz, P. (eds.) Topological Methods, Variational Methods and Their Applications. World Scientific, pp. 11–21 (2003)Google Scholar
  2. Albouy, A., Stuchi, T.: Generalizing the classical fixed-centres problem in a non-Hamiltonian way. J. Phys. A 37, 9109–9123 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  3. Bogoyavlensky, O.I.: Integrable cases of rigid body dynamics and integrable systems on spheres S n. Izv. AN SSSR 49 (5), 899–915 (1985) (in Russian)Google Scholar
  4. Borisov, A.V., Mamaev, I.S.: Generalized problem of two and four Newtonian centers. Celestial Mech. Dynam. Astronom. 92, 371–380 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  5. Charlier, C.L.: Die Mechanik des Himmels. Walter de Gruyter & Co, Berlin (1927)MATHGoogle Scholar
  6. Darboux G. (1901) Sur un problème de mècanique. Archives Nèerlandaises de Sciences 6 (2): 371–376Google Scholar
  7. Deprit, A.: Le problé Bull. Nath. Belg. 142, 12–45 (1962)MathSciNetGoogle Scholar
  8. Dragović, V.: Separability in Hamilton–Jacobi sense in two degrees of freedom and the Appell hypergeometric functions. J. of Nonlinear Math. Phys. 2, 170–177 (2005)Google Scholar
  9. Erikson, H.A., Hill, E.L.: A note on the one–electron states of diatomic molecules. Phys. Rev. 75, 29–31 (1949)CrossRefADSGoogle Scholar
  10. Jacobi, C.G.J.: Vorlesungen ü. G. Reimer, Berlin (1884)Google Scholar
  11. Killing, W.: Die Mechanik in den Nicht-Euklidischen Raumformen. J. Reine Angew. Math. 98, 1–48 (1885)Google Scholar
  12. Kozlov, I.S.: The problem of four fixed centers and its applications to the theory of motion of celestial bodies. Astron. J. 51, 191–198 (1974) (in Russian)Google Scholar
  13. Kozlov, V.V., Kharin, A.O.: Kepler’s problem in constant curvature spaces. Celestial Mech. Dynam. Astronom. 54, 393–399 (1992)MATHCrossRefADSMathSciNetGoogle Scholar
  14. Liouville, J.: Sur quelques cas particuliers où. Math. Pure Appl. Sé 11, 345–378 (1846)Google Scholar
  15. Mamaev, I.S.: Two integrable systems on a two-dimensional sphere. Dokl. Phys. 48, 156–158 (2003)CrossRefMathSciNetGoogle Scholar
  16. Neumann, J.: De problemate quodam mechanico quod ad primam integralium ultraellipticorum revocatur. J. Reine Angew. Math. 56, 46–63 (1859)Google Scholar
  17. Otchik, V.S.: Symmetry and separation of variables in the two-center Coulomb problem in three dimensional spaces of constant curvature. DAN BSSR 35(5), 420–424 (1991) (in Russian)Google Scholar
  18. Sadetov, S.T.: Series of rational potential separable in elliptic coordinates. Dokl. Math. 74, 834–838 (2006)CrossRefGoogle Scholar
  19. Vozmischeva, T.G.: Classification of motions for generalization of the two-centers problem on a sphere. Celestial Mech. Dynam. Astronom. 77, 37–48 (2000)MATHCrossRefADSGoogle Scholar
  20. Vozmischeva, T.G.: The Lagrange and two-center problems in the Lobachevsky space. Celestial Mech. Dynam. Astronom. 84, 65–85 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  21. Vozmischeva, T.G., Oshemkov, A.A.: Topological analysis of the two-center problem on two-dimensional sphere. Sbornik: Mathematics 193(8), 1103–1138 (2002)CrossRefMathSciNetGoogle Scholar
  22. Wojciechowski, S.: Integrable one–particle potentials related to the Neumann system and the Jacobi problem of geodesic motion on an ellipsoid. Phys. Lett. A 107, 106–111 (1985)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations