Skip to main content
Log in

Regular and chaotic orbits in a self-consistent triaxial stellar system with slow figure rotation

  • Original Paper
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We created a self-consistent triaxial stellar system through the cold disipationless collapse of 100,000 particles whose evolution was followed with a multipolar code. The resulting system rotates slowly even though its total angular momentum is zero, i.e., it offers an example of figure rotation. The potential of the system was subsequently approximated with interpolating formulae yielding a smooth potential stationary in the rotating frame. The Lyapunov exponents could then be computed for a randomly selected sample of 3,472 of the bodies that make up the system, allowing the recognition of regular and partially and fully chaotic orbits. The regular orbits were Fourier analyzed and classified using their locations on the frequency map. A comparison with a similar non-rotating model showed that the fraction of chaotic orbits is slightly but significantly enhanced in the rotating model; alternatively, there are no significant differences between the corresponding fractions neither of partially and fully chaotic orbits nor of long axis tubes, short axis tubes, boxes and boxlets among the regular orbits. This is a reasonable result because the rotation causes a breaking of the symmetry that may increase chaotic effects, but the rotation velocity is probably too small to produce any other significant differences. The increase in the fraction of chaotic orbits in the rotating system seems to be due mainly to the effect of the Coriolis force, rather than the centrifugal force, in good agreement with the results of other investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarseth S.J. (2003): Gravitational N-body Simulations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Binney J., Spergel D. (1982): Spectral stellar dynamics. Astrophys. J. 252, 308–321

    Article  ADS  Google Scholar 

  • Binney J., Spergel D. (1984): Spectral stellar dynamics. II—the action integrals. MNRAS, 206, 159–177

    ADS  Google Scholar 

  • Binney J., Tremaine S. (1987): Galactic Dynamics. Princeton University Press, Princenton, NJ

    Google Scholar 

  • Carpintero D.D., Aguilar L.A. (1998): Orbit classification in arbitrary 2D and 3D potentials. MNRAS, 298(1): 1–21

    Article  ADS  Google Scholar 

  • Carpintero D.D., Muzzio J.C., Vergne M.M., Wachlin F.C. (2003): Chaotic orbits in galactic satellites. Celest. Mech. Dyn. Astron. 85, 247–267

    Article  MATH  ADS  Google Scholar 

  • Cruz F., Aguilar L.A., Carpintero D.D. (2002): A new method to find the potential center of N-body systems. Rev. Mex. Astron. Astrof. 38, 225–231

    ADS  Google Scholar 

  • Hernquist L., Barnes J. (1990): Are some N-body algorithms intrinsically less collisional than others?. Astrophys. J. 349, 562–569

    Article  ADS  Google Scholar 

  • Kalapotharakos C., Voglis N. (2005): Global dynamics in self-consistent models of elliptical galaxies. Celest. Mech. Dynam. Astron. 92(1–3): 157–188

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Merritt D. (1999): Elliptical galaxy dynamics. Publ. Astron. Soc. Pac. 111(756): 129–168

    Article  ADS  Google Scholar 

  • Muzzio J.C. (2001): Chaos in a simple dynamical system. Anales Acad. Nac. de Cs. Ex. Fís. y Nat. 53, 65–72

    Google Scholar 

  • Muzzio J.C. (2003): Chaos in elliptical galaxies. Bol. Asoc. Argentina Astron. 45(45): 69–70

    Google Scholar 

  • Muzzio J.C., Carpintero D.D., Wachlin F.C. (2005): Spatial structure of regular and chaotic orbits in a self-consistent triaxial stellar system. Celest. Mech. Dyn. Astron. 91(1–2): 173–190

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Muzzio J.C., Mosquera M.E. (2004): Spatial structure of regular and chaotic orbits in self-consistent models of galactic satellites. Celest. Mech. Dynam. Astron. 88(4): 379–396

    Article  MATH  ADS  Google Scholar 

  • Papaphilippou Y., Laskar J. (1998): Global dynamics of triaxial galactic models through frequency map analysis. Astron. & Astrophys. 329, 451–481

    ADS  Google Scholar 

  • Schwarzschild M. (1979): A numerical model for a triaxal stellar system in dynamical equilibrium. ApJ 232, 236–247

    Article  ADS  Google Scholar 

  • Šidlichovský M., Nesvorný D. (1997): Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148

    Article  ADS  Google Scholar 

  • Sparke L.S., Sellwood J.A. (1987): Dissection of an N-body bar. MNRAS 225, 653–675

    ADS  Google Scholar 

  • Statler T.S., Emsellem E., Peletier R.F., Bacon R. (2004): Long-lived triaxiality in the dynamically old elliptical galaxy NGC 4365: a limit on chaos and black hole mass. MNRAS 353, 1–14

    Article  ADS  Google Scholar 

  • Udry S., Pfenniger D. (1988): Stochasticity in elliptical galaxies. Astron.Astrophys. 198, 135–149

    MATH  MathSciNet  ADS  Google Scholar 

  • Voglis N., Kalapotharakos C., Stavropoulos I. (2002): Mass components in ordered and in chaotic motion in galactic N-body models. MNRAS 337(2): 619–630

    Article  ADS  Google Scholar 

  • Wachlin F.C., Ferraz-Mello S. (1998): Frequency map analysis of the orbital structure in elliptical galaxies. MNRAS 298(1): 22–32

    Article  ADS  Google Scholar 

  • White S.D.M. (1983): Simulations of sinking satellites. Astrophys. J. 274, 53–61

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Muzzio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzzio, J.C. Regular and chaotic orbits in a self-consistent triaxial stellar system with slow figure rotation. Celestial Mech Dyn Astr 96, 85–97 (2006). https://doi.org/10.1007/s10569-006-9036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9036-7

Keywords

Navigation