Precise measurement of the solar gravitational red shift

  • Alessandro Cacciani
  • Runa Briguglio
  • Fabrizio Massa
  • Paolo Rapex
Original Article

Abstract

We present the concept and the status of a multi-year project based on a new method to measure the Gravitational Red Shift of the Solar Spectrum with high precision. This project is aimed to conduct experimental verifications of the effect that the Einstein theory of General Relativity predicts for the frequencies of the Fraunhofer lines, that is, the light spectrum emitted by the Sun in its strong gravitational field. Previous determinations of such effect is limited to a precision of 2%. In order to discriminate between classical and relativistic explanations, we need to be sensitive to one part per million of the predicted effect. We have developed a new powerful technique, the Magneto-Optical Filter, that is able to provide far better precision and, for the future, possible space instrumentations able to extend our test to the second-order effect of the relativistic equivalence principle, never done before. The present paper is intended to describe the instrumentation, the procedure and the first encouraging results.

Keywords

Tests of general relativity Gravitational red-shift Fraunhofer spectrum Magneto-optical filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckers J.M. (1977). Material motions in sunspot umbrae. Ap. J. 213:900–905CrossRefADSGoogle Scholar
  2. Bray R.J., Loughhead R.E., Durrant C.J. (1984). The solar granulation, 2nd edn. CUP, CambridgeGoogle Scholar
  3. Cacciani, A., Rosati, P., Ricci, D., Egidi, A., Apporchaux, T., Marquedant, R., Smith, E.: Theoretical and experimental study of the Magneto-Optical Filter. JPL Document # D11900, Pasadena CaliforniaGoogle Scholar
  4. Cacciani A., Moretti P.F. (1993). Magneto-optical filter (MOF): concept and applications in astronomy. SPIE 2198:219–228ADSGoogle Scholar
  5. Cacciani A., Dolci M., Moretti P.F., D’Alessio F., Giuliani C., Micolucci E., Di Cianno A. (2001). Search for global oscillations on Jupiter with a double cell Sodium Magneto-Optical Filter. A&A 372: 317–325CrossRefADSGoogle Scholar
  6. Dravins D. (1982). Photospheric Spectrum line asymmetries and wavelength shifts. ARA&A 20:61–89ADSGoogle Scholar
  7. Finsterle W., Jefferies S.M., Cacciani A., Rapex P., Giebink C., Knox A., and DiMartino V. (2004a). Seismology of the solar atmosphere Solar Phys. 220:317–331CrossRefADSGoogle Scholar
  8. Finsterle W., Jefferies S.M., Cacciani A., Rapex P., McIntosh S.W. (2004b). Helioseismic mapping of the magnetic canopy in the solar chromosphere ApJ. Lett. 613:L185CrossRefADSGoogle Scholar
  9. Fujii Y. (1991). Theoretical background of the fifth force. Int. J. Modern Phys. A6 20:3505–3557CrossRefADSGoogle Scholar
  10. Kopeikin S.M., Ozernoy L.M. (1999). Post-Newtonian theory for precision doppler measurements of binary star orbits. ApJ 523:771–785CrossRefADSGoogle Scholar
  11. Krisher T.P., Morabito D., Anderson J.D. (1993). The Galileo solar redshift experiment. Phys. Rev. Lett. 70:2213–2216CrossRefADSGoogle Scholar
  12. Lindegren L., Dravins D. (2003). The Fundamenta Definition of “radial velocity”. A&A 401:1185–1201CrossRefADSGoogle Scholar
  13. LoPresto J.C., Shrader C., Pierce A.K. (1991). Solar gravitational red shift from the infrared oxigen triplet. ApJ 367:757–760CrossRefADSGoogle Scholar
  14. Ohanian, HC.: Special relativity:a modern introduction. Phys. Curric. & Instr. (Edition 2001)Google Scholar
  15. Pound R.V., Rebka G.A. (1960). Apparent weigth of photons. Phys. Rev. Lett. 4:337CrossRefADSGoogle Scholar
  16. Roddier F. (1965). Etude a haute resolution de quelques raies de Fraunhoffer par observation de la response optique d’un jet atomique. I:Realization d’un spectrograph a jet atomique. Ann. Ap. 28:463ADSGoogle Scholar
  17. Rhodes E., Cacciani A., Woodard M., Tomczyk S., Korzennik S., Ulrich R. (1988). On the constancy of intermediate-degree p-mod frequencies during the declining phase of solar cycle 21. ApJ 326:479–485CrossRefADSGoogle Scholar
  18. Rhodes E.J., Cacciani A., Korzennik S., Tomczyk S., Ulrich R. (1990). Depth and latitude dependence of the solar internal rotation. ApJ. 351:687–700CrossRefADSGoogle Scholar
  19. Snider J.L. (1972). New measurement of the solar gravitational red shift. Phys. Rev. Lett. 28:853CrossRefADSGoogle Scholar
  20. Vessot et al. (1980). Test of relativistic gravitationwith a space-born hydrogen maser. Phys. Rev. Lett. 45(26):2081CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Alessandro Cacciani
    • 1
  • Runa Briguglio
    • 1
  • Fabrizio Massa
    • 1
  • Paolo Rapex
    • 1
  1. 1.Physics Department University “LA SAPIENZA”RomeItaly

Personalised recommendations