Celestial Mechanics and Dynamical Astronomy

, Volume 93, Issue 1–4, pp 87–100 | Cite as

Families of Asymmetric Periodic Orbits in Hill’s Problem of Three Bodies

Article

Abstract

We present five families of periodic solutions of Hill’s problem which are asymmetric with respect to the horizontal ξ axis. In one of these families, the orbits are symmetric with respect to the vertical η axis; in the four others, the orbits are without any symmetry. Each family consists of two branches, which are mirror images of each other with respect to the ξ axis. These two branches are joined at a maximum of Γ, where the family of asymmetric periodic solutions intersects a family of symmetric (with respect to the ξ axis) periodic solutions. Both branches can be continued into second species families for Γ → − ∞.

Keywords

Hill’s problem numerical integration periodic orbits second species families 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batkhina, N. V. and Batkhin A. B.: 2004, private communication.Google Scholar
  2. Hénon, M. 1965‘Exploration numérique du problème restreint. II. Masses égales, stabilité des orbites périodiques’Annales d’Astrophysique.289921007ADSMATHGoogle Scholar
  3. Hénon, M. 1969‘Numerical Exploration of the Restricted Problem. V. Hill’s Case: Periodic Orbits and Their Stability’Astron. & Astrophys.1223238ADSMATHGoogle Scholar
  4. Hénon, M. 1997‘Generating Families in the Restricted Three-Body Problem’SpringerBerlinLecture Notes in Physics 52Google Scholar
  5. Hénon, M. 2003‘New Families of Periodic Orbits in Hill’s Problem of Three Bodies’Celestial Mech. Dynamical Astron.85223246ADSMATHGoogle Scholar
  6. Kreisman, B.B., Batkhina N.V. and Batkhin A.B.: 2004, ‘An Adaptive Algorithm for the Continuation of Families of Symmetric Periodic Solutions’ (in russian), Numerical Methods Programming, Moscow University, 5, 96–106. http://num-meth.srcc.msu.ru/english/zhurnal/tom_2004/v5r109.html
  7. Szebehely, V. 1967‘Theory of Orbits – The Restricted Problem of Three Bodies’Academic PressNew YorkGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Observatoire de la Côte d’AzurC.N.R.S.Nice Cedex 4France

Personalised recommendations