Celestial Mechanics and Dynamical Astronomy

, Volume 92, Issue 4, pp 371–380 | Cite as

Generalized Problem of Two and Four Newtonian Centers



We consider integrable spherical analog of the Darboux potential, which appear in the problem (and its generalizations) of the planar motion of a particle in the field of two and four fixed Newtonian centers. The obtained results can be useful when constructing a theory of motion of satellites in the field of an oblate spheroid in constant curvature spaces.


spherical two (and four) centers problem Newtonian potential sphero-conical coordinates separation of variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksenov, Ye. P., Grebenikov, Ye. A., Demin, V. T. 1963‘Generalized problem of two fixed centers and its application in the theory of motion of the Earth’s artificial satellites’Astron. J.40363372Google Scholar
  2. Alekseev, V. M. 1665‘Generalized spatial problem of two fixed centers Classification of motions’ITA Bull.10241271Google Scholar
  3. Bogoyavlensky, O. I. 1985‘Integrable cases of rigid body dynamics and integrable systems on spheres SnIzv. AN SSSR49899915Google Scholar
  4. Borisov, A. V. and Mamaev, I. S.: 1999, Poisson structures and Lie algebras in Hamiltonian mechanics, Izhevsk, SPC ‘RCD’ (In Russian).Google Scholar
  5. Borisov, A. V. and Mamaev, I. S.: 2001, Rigid Body Dynamics, Izhevsk, SPC ‘RCD’ (In Russian).Google Scholar
  6. Born, M. 1925Vorlesungen über AtommechanikSpringerBerlinGoogle Scholar
  7. Charlier, C. L.: 1927, Die Mechanik des Himmels, Berlin, Walter de Gruyter & Co.Google Scholar
  8. Chernikov, N. A. 1992a‘The Kepler problem in the Lobachevsky space and its solution’Acta Phys. Pol.23115119Google Scholar
  9. Chernikov, N. A. 1992b‘The relativistic Kepler problem in the Lobachevsky space’Acta Phys. Pol.24927950Google Scholar
  10. Darboux, G. 1901‘Sur un probléme de mécanique’Archives Néerlandaises de Sciences6371376Google Scholar
  11. Deprit, A. 1962‘Le probléme des deux centers fixes’Bull. Nath. Belg.1421245Google Scholar
  12. Dombrowski, P., Zitterbarth, J. 1991‘On the planetary motion in the 3 standard spaces Mk3 of constant curvature \(k \in {\mathbb R} \)Demonstratio Math.24375458Google Scholar
  13. Higgs, P. W. 1979‘Dynamical symmetries in a spherical geometry. I.’J. Phys. A.12309323CrossRefGoogle Scholar
  14. Ikeda, M., Katayama, N. 1982‘On generalization of Bertrand’s theorem to spaces of constant curvature’Tensor N. S.383740Google Scholar
  15. Jacobi, C. J.: 1884, Vorlesungen über Dynamik, Aufl. 2, Berlin, G. Reimer.Google Scholar
  16. Killing, W. 1885‘Die Mechanik in den Nicht-Euklidischen Raumformen’J. Reine Angew. Math.98148Google Scholar
  17. Kozlov, I. S. 1974‘The problem of four fixed centers and its applications to the theory of motion of celestial bodies’Astron. J.51191198Google Scholar
  18. Kozlov V.V. (1994). ‘On dynamics in constant curvature spaces’. Vestnik MGU, Ser. Math. Mech. 28–35.Google Scholar
  19. Kozlov, V. V., Harin, A. O. 1992‘Kepler’s problem in constant curvature spaces’Celest. Mech. and Dynam. Astron.54393399CrossRefGoogle Scholar
  20. Liebmann H. (1905). Nichteuklidische Geometrie. Leipzig, G. J. Göschen’sche Verlagshandlung.Google Scholar
  21. Mamaev, I. S. 2003‘Two integrable systems on a two-dimensional sphere’Dokl. RAN389338340Google Scholar
  22. Schrödinger, E. 1940‘A method of determining of quantum-mechanical eigenvalues and eigenfunctions’Proceedings of the Royal Irish Academy46A916Google Scholar
  23. Slawianowski, J. 1980‘Bertrand systems on so(3,R), su(2)’Bull. de l’Academie Polonica des Sciences288394Google Scholar
  24. Velpry, C. 2000‘Kepler laws and gravitation in non-Euclidean (classical) mechanics’Heavy Ion Phys.11131146Google Scholar
  25. Vozmischeva, T. G. 2000‘Classification of motions for generalization of the two center problem on a sphere’Celest. Mech. and Dynam. Astron.773748CrossRefGoogle Scholar
  26. Vozmischeva, T. G., Oshemkov, A. A. 2002‘Topological analysis of the two-center problem on two-dimensional sphere’Math. Sbornik193338Google Scholar
  27. Whittaker, E. T.: 1959, Analytical Dynamics, Cambridge University Press.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia

Personalised recommendations