The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection

  • Zsolt Sándor
  • Bálint Érdi
  • András Széll
  • Barbara Funk

Abstract

A recently introduced chaos detection method, the relative Lyapunov indicator (RLI) is investigated in the cases of symplectic mappings and of a continuous Hamiltonian system. It is shown that the RLI is an efficient and easy-to-calculate numerical tool in determining the true nature of individual orbits, and in separating ordered and regular regions of the phase space of dynamical systems. An application of the RLI for stability investigations of some recently discovered exoplanetary systems is also presented.

chaos detection exoplanetary systems Lyapunov indicators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Contopoulos, G. and Voglis, N.: 1997, ‘A fast method for distinguishing between ordered and chaotic orbits’, Astr. Astrophys. 317, 73.ADSGoogle Scholar
  2. Froeschl´e, C., Lega, E. and Gonczi, R.: 1997, ‘Fast Lyapunov indicators. Application to asteroidal motion’, Celest. Mech. Dyn. Astron. 67, 41.MathSciNetCrossRefADSGoogle Scholar
  3. Froeschl´e, C., Guzzo, M. and Lega, E.: 2000, ‘Graphical evolution of the Arnold's web: from order to chaos’, Science 289, N.5487, 2108.CrossRefADSGoogle Scholar
  4. Guzzo, M., Lega, E. and Froeschl´e C.: 2002, ‘On the numerical detection of the effective stability of chaotic motions in quasi–integrable systems’, Phys. D 163,1.Google Scholar
  5. Kasting, J. F., Whitmire, D. P. and Reynolds, R. T.: 1993, ‘Habitable zones around main sequence stars’, Icarus 101, 108.CrossRefADSGoogle Scholar
  6. Menou, K. and Tabachnik, S.: 2003, ‘Dynamical habitability of known extrasolar planetary systems’, Astrophys. J. 583, 473.CrossRefADSGoogle Scholar
  7. Morbidelli, A. and Froeschl´e C.: 1996, ‘On the relationship between Lyapunov times and macro-scopic instability times’, Celest. Mech. Dyn. Astron. 63, 227.MATHADSGoogle Scholar
  8. Nekhoroshev, N. N.: 1977, ‘Exponential estimates of the stability time of near-integrable Hamilto-nian systems’, Russ. Math. Surveys 32,1.MATHCrossRefGoogle Scholar
  9. Nesvorn´y, D. and Ferraz-Mello, S.: 1997, ‘On the asteroidal population of the first-order Jovian resonances’, Icarus 130, 247.CrossRefADSGoogle Scholar
  10. S´andor, Zs., Erdi, B. and Efthymiopoulos, C.: 2000, ‘The phase space structure around L4 in the restricted three-body problem’, Celest. Mech. Dyn. Astron. 78, 113.MathSciNetCrossRefADSGoogle Scholar
  11. Skokos, Ch.: 2001, ‘Alignment indices: a new simple method for determining the ordered or chaotic nature of orbits’, J. Phys. A (Math. Gen.) 34, 10029.MATHMathSciNetCrossRefADSGoogle Scholar
  12. Voglis, N., Contopoulos, G. and Efthymiopoulos, C.: 1998, ‘Method for distinguishing between ordered and chaotic orbits in four-dimensional maps’, Phys. Rev. E 57, 372.CrossRefADSGoogle Scholar
  13. Voglis, N., Contopoulos, G. and Efthymiopoulos, C.: 1999, ‘Detection of ordered and chaotic motion using the dynamical spectra’, Celest. Mech. Dyn. Astron.73, 211.MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Zsolt Sándor
    • 1
  • Bálint Érdi
    • 1
  • András Széll
    • 2
    • 3
  • Barbara Funk
    • 4
  1. 1.Department of AstronomyEötvös University H-1117 BudapestHungary, e-mail
  2. 2.School of Computing and Mathematical SciencesGlasgow Caledonian UniversityU.K
  3. 3.Department of AstronomyRutgers UniversityNew BrunswickU.S.A
  4. 4.Institute for AstronomyUniversity of ViennaViennaAustria

Personalised recommendations